BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

340 related articles for article (PubMed ID: 7318921)

  • 1. Lithium dissociates haloperidol-induced behavioral supersensitivity from reduced dopac increase in rat striatum.
    Meller E; Friedman E
    Eur J Pharmacol; 1981 Nov; 76(1):25-9. PubMed ID: 7318921
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developmental change in striatal concentration of homovanillic acid and 3,4-dihydroxyphenylacetic acid in response to apomorphine and haloperidol treatment.
    Nomura Y; Komori T; Okuda S; Segawa T
    Arch Int Pharmacodyn Ther; 1979 Jan; 237(1):25-30. PubMed ID: 485682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of lithium on biochemical manifestations of striatal dopamine target cell supersensitivity induced by prolonged haloperidol treatment.
    Le Douarin C; Oblin A; Fage D; Scatton B
    Eur J Pharmacol; 1983 Sep; 93(1-2):55-62. PubMed ID: 6628547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of chronic lithium treatment on dopamine receptors in the rat corpus striatum. II. No effect on denervation or neuroleptic-induced supersensitivity.
    Staunton DA; Magistretti PJ; Shoemaker WJ; Deyo SN; Bloom FE
    Brain Res; 1982 Jan; 232(2):401-12. PubMed ID: 6322915
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of chronic lithium on behavioral and biochemical indices of dopamine receptor supersensitivity in the rat.
    Pittman KJ; Jakubovic A; Fibiger HC
    Psychopharmacology (Berl); 1984; 82(4):371-7. PubMed ID: 6427831
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulating role of lithium on dopamine turnover, prolactin release, and behavioral supersensitivity following haloperidol and reserpine.
    McIntyre IM; Kuhn C; Demitriou S; Fucek FR; Stanley M
    Psychopharmacology (Berl); 1983; 81(2):150-4. PubMed ID: 6415746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of cyclo (Leu-Gly) on neurochemical indices of striatal dopaminergic supersensitivity induced by prolonged haloperidol treatment.
    Le Douarin C; Fage D; Scatton B
    Life Sci; 1984 Jan; 34(4):393-9. PubMed ID: 6694528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-term treatment with lithium prevents the development of dopamine receptor supersensitivity.
    Pert A; Rosenblatt JE; Sivit C; Pert CB; Bunney WE
    Science; 1978 Jul; 201(4351):171-3. PubMed ID: 566468
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conditional tolerance to haloperidol-induced catalepsy is not caused by striatal dopamine receptor supersensitivity.
    de Graaf CJ; Korf J
    Psychopharmacology (Berl); 1986; 90(1):54-7. PubMed ID: 3094062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Apomorphine- and haloperidol-induced change in 3,4-dihydroxyphenylacetic acid content in the mesolimbic-striatum of the developing rat.
    Nomura Y; Oki K; Segawa T
    J Pharmacobiodyn; 1980 Feb; 3(2):111-6. PubMed ID: 7205536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of apomorphine on morphine analgesia during the state of dopaminergic supersensitivity after chronic treatment with haloperidol.
    Kamata K; Ogawa K; Noma S; Kameyama T
    J Pharmacobiodyn; 1986 Jan; 9(1):88-94. PubMed ID: 3712211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The behavioral and biochemical effects of lithium on dopaminergic agonist-induced supersensitivity.
    Rubin EH; Wooten GF
    Psychopharmacology (Berl); 1984; 84(2):217-20. PubMed ID: 6438680
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lithium does not interact with haloperidol in the dopaminergic pathways of the rat brain.
    Reches A; Jackson-Lewis V; Fahn S
    Psychopharmacology (Berl); 1984; 82(4):330-4. PubMed ID: 6427824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of haloperidol-induced increase in rat striatal or mesolimbic 3,4-dihydroxyphenylacetic acid and homovanillic acid by pretreatment with chronic methamphetamine.
    Toru M; Mataga N; Takashima M; Nishikawa T
    Psychopharmacology (Berl); 1981; 74(4):316-20. PubMed ID: 6794073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of the synthesis and metabolism of striatal dopamine after disruption of nerve conduction in the medial forebrain bundle.
    Commissiong JW; Slimovitch C; Toffano G
    Br J Pharmacol; 1990 Apr; 99(4):741-9. PubMed ID: 2361171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tolerance to fluphenazine and supersensitivity to apomorphine in central dopaminergic systems after chronic fluphenazine decanoate treatment.
    Wheeler SC; Roth RH
    Naunyn Schmiedebergs Arch Pharmacol; 1980 Jun; 312(2):151-9. PubMed ID: 7190650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Behavioral and biochemical aspects of neuroleptic-induced dopaminergic supersensitivity: studies with chronic clozapine and haloperidol.
    Seeger TF; Thal L; Gardner EL
    Psychopharmacology (Berl); 1982; 76(2):182-7. PubMed ID: 6805029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chronic molindone treatment: relative inability to elicit dopamine receptor supersensitivity in rats.
    Meller E
    Psychopharmacology (Berl); 1982; 76(3):222-7. PubMed ID: 6808540
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decrease in the evoked release of endogenous dopamine and dihydroxyphenylacetic acid from rat striatal slices after withdrawal from repeated haloperidol.
    Umeda Y; Sumi T
    Eur J Pharmacol; 1990 Nov; 191(2):149-55. PubMed ID: 2086236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of intranigral administration of dopamine agonists and antagonists and baclofen on concentrations of dopac and dopamine in the striatum and substantia nigra of the rat.
    Wuerthele SM; Friedle NM; Moore KE
    J Neural Transm; 1979; 45(2):117-27. PubMed ID: 469523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.