These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Transient flagellar waveforms during intermittent swimming in sea urchin sperm. I. Wave parameters. Gibbons IR; Gibbons BH J Muscle Res Cell Motil; 1980 Mar; 1(1):31-59. PubMed ID: 7229022 [TBL] [Abstract][Full Text] [Related]
4. Form of developing bends in reactivated sperm flagella. Goldstein SF J Exp Biol; 1976 Feb; 64(1):173-84. PubMed ID: 1270988 [TBL] [Abstract][Full Text] [Related]
5. Effect of imposed head vibration on the stability and waveform of flagellar beating in sea urchin spermatozoa. Shingyoji C; Gibbons IR; Murakami A; Takahashi K J Exp Biol; 1991 Mar; 156():63-80. PubMed ID: 2051139 [TBL] [Abstract][Full Text] [Related]
6. Modification of flagellar waveform and adenosine triphosphatase activity in reactivated sea-urchin sperm treated with N-ethylmaleimide. Cosson MP; Tang WJ; Gibbons IR J Cell Sci; 1983 Mar; 60():231-49. PubMed ID: 6223931 [TBL] [Abstract][Full Text] [Related]
7. Regulatory mechanisms of sperm flagellar motility by metachronal and synchronous sliding of doublet microtubules. Takei GL; Fujinoki M; Yoshida K; Ishijima S Mol Hum Reprod; 2017 Dec; 23(12):817-826. PubMed ID: 29040653 [TBL] [Abstract][Full Text] [Related]
9. Transient flagellar waveforms in reactivated sea urchin sperm. Gibbons IR J Muscle Res Cell Motil; 1986 Jun; 7(3):245-50. PubMed ID: 2942559 [TBL] [Abstract][Full Text] [Related]
10. Calcium regulation of microtubule sliding in reactivated sea urchin sperm flagella. Bannai H; Yoshimura M; Takahashi K; Shingyoji C J Cell Sci; 2000 Mar; 113 ( Pt 5)():831-9. PubMed ID: 10671372 [TBL] [Abstract][Full Text] [Related]
11. Effect of beat frequency on the velocity of microtubule sliding in reactivated sea urchin sperm flagella under imposed head vibration. Shingyoji C; Yoshimura K; Eshel D; Takahashi K; Gibbons IR J Exp Biol; 1995 Mar; 198(Pt 3):645-53. PubMed ID: 7714454 [TBL] [Abstract][Full Text] [Related]
13. Spontaneous recovery after experimental manipulation of the plane of beat in sperm flagella. Gibbons IR; Shingyoji C; Murakami A; Takahashi K Nature; 1987 Jan 22-28; 325(6102):351-2. PubMed ID: 3808030 [TBL] [Abstract][Full Text] [Related]
14. Mechanical induction of oscillatory movement in demembranated, immotile flagella of sea urchin sperm at very low ATP concentrations. Izawa Y; Shingyoji C J Exp Biol; 2020 Oct; 223(Pt 20):. PubMed ID: 32796042 [TBL] [Abstract][Full Text] [Related]
15. Microtubule sliding in swimming sperm flagella: direct and indirect measurements on sea urchin and tunicate spermatozoa. Brokaw CJ J Cell Biol; 1991 Sep; 114(6):1201-15. PubMed ID: 1894694 [TBL] [Abstract][Full Text] [Related]
16. Transient behavior of sea urchin sperm flagella following an abrupt change in beat frequency. Eshel D; Shingyoji C; Yoshimura K; Gibbons BH; Gibbons IR; Takahashi K J Exp Biol; 1990 Sep; 152():441-51. PubMed ID: 2230640 [TBL] [Abstract][Full Text] [Related]
18. Effects of viscosity and ATP concentration on the movement of reactivated sea-urchin sperm flagella. Brokaw CJ J Exp Biol; 1975 Jun; 62(3):701-19. PubMed ID: 1206349 [TBL] [Abstract][Full Text] [Related]
19. Effects of antibodies against tubulin on the movement of reactivated sea urchin sperm flagella. Asai DJ; Brokaw CJ J Cell Biol; 1980 Oct; 87(1):114-23. PubMed ID: 7419586 [TBL] [Abstract][Full Text] [Related]
20. The axonemal axis and Ca2+-induced asymmetry of active microtubule sliding in sea urchin sperm tails. Sale WS J Cell Biol; 1986 Jun; 102(6):2042-52. PubMed ID: 2940250 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]