BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 7320696)

  • 1. Polypeptide composition of Chlamydia trachomatis.
    Salari SH; Ward ME
    J Gen Microbiol; 1981 Apr; 123(2):197-207. PubMed ID: 7320696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Purification and partial characterization of the major outer membrane protein of Chlamydia trachomatis.
    Caldwell HD; Kromhout J; Schachter J
    Infect Immun; 1981 Mar; 31(3):1161-76. PubMed ID: 7228399
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antigenic specificity of human antibody to chlamydia in trachoma and lymphogranuloma venereum.
    Ward ME; Treharne JD; Murray A
    J Gen Microbiol; 1986 Jun; 132(6):1599-610. PubMed ID: 2433383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Purification of Chlamydia trachomatis lymphogranuloma venereum elementary bodies and their interaction with HeLa cells.
    Bose SK; Paul RG
    J Gen Microbiol; 1982 Jun; 128(6):1371-9. PubMed ID: 6288839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural analysis of chlamydial major outer membrane proteins.
    Caldwell HD; Judd RC
    Infect Immun; 1982 Dec; 38(3):960-8. PubMed ID: 7152681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and properties of chlamydial polypeptides that bind eucaryotic cell surface components.
    Hackstadt T
    J Bacteriol; 1986 Jan; 165(1):13-20. PubMed ID: 3941041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of Chlamydia trachomatis with human genital epithelium in culture.
    Moorman DR; Sixbey JW; Wyrick PB
    J Gen Microbiol; 1986 Apr; 132(4):1055-67. PubMed ID: 3760816
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extensive heterogeneity of the protein composition of Chlamydia trachomatis following serial passage in two different cell lines.
    Goswami PC; Vretou E; Bose SK
    J Gen Microbiol; 1990 Aug; 136(8):1623-9. PubMed ID: 2262794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differences in outer membrane proteins of the lymphogranuloma venereum and trachoma biovars of Chlamydia trachomatis.
    Batteiger BE; Newhall WJ; Jones RB
    Infect Immun; 1985 Nov; 50(2):488-94. PubMed ID: 4055030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chlamydia trachomatis elementary bodies possess proteins which bind to eucaryotic cell membranes.
    Wenman WM; Meuser RU
    J Bacteriol; 1986 Feb; 165(2):602-7. PubMed ID: 3511037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of sustained antibiotic bactericidal treatment on Chlamydia trachomatis-infected epithelial-like cells (HeLa) and monocyte-like cells (THP-1 and U-937).
    Mpiga P; Ravaoarinoro M
    Int J Antimicrob Agents; 2006 Apr; 27(4):316-24. PubMed ID: 16527461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The molecular biology and diagnostics of Chlamydia trachomatis.
    Birkelund S
    Dan Med Bull; 1992 Aug; 39(4):304-20. PubMed ID: 1526183
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trachoma and LGV biovars of Chlamydia trachomatis share the same glycosaminoglycan-dependent mechanism for infection of eukaryotic cells.
    Chen JC; Stephens RS
    Mol Microbiol; 1994 Feb; 11(3):501-7. PubMed ID: 8152374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immunoassay for detecting Chlamydia trachomatis major outer membrane protein.
    Caldwell HD; Schachter J
    J Clin Microbiol; 1983 Sep; 18(3):539-45. PubMed ID: 6355147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Serotonin and melatonin, neurohormones for homeostasis, as novel inhibitors of infections by the intracellular parasite chlamydia.
    Rahman MA; Azuma Y; Fukunaga H; Murakami T; Sugi K; Fukushi H; Miura K; Suzuki H; Shirai M
    J Antimicrob Chemother; 2005 Nov; 56(5):861-8. PubMed ID: 16172105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Damage/Danger Associated Molecular Patterns (DAMPs) Modulate Chlamydia pecorum and C. trachomatis Serovar E Inclusion Development In Vitro.
    Leonard CA; Schoborg RV; Borel N
    PLoS One; 2015; 10(8):e0134943. PubMed ID: 26248286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cyclic AMP inhibits developmental regulation of Chlamydia trachomatis.
    Kaul R; Wenman WM
    J Bacteriol; 1986 Nov; 168(2):722-7. PubMed ID: 3023286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chlamydia trachomatis in cell culture. II. Susceptibility of seven established mammalian cell types in vitro. Adaptation of trachoma organisms to McCoy and BHK-21 cells.
    Rota TR
    In Vitro; 1977 May; 13(5):280-92. PubMed ID: 559642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein profiles of dense-centered forms of five chlamydial strains of animal origin.
    Stephenson EH; Storz J
    Am J Vet Res; 1975 Jul; 36(7):881-7. PubMed ID: 1147351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A chlamydial major outer membrane protein extract as a trachoma vaccine candidate.
    Campos M; Pal S; O'Brien TP; Taylor HR; Prendergast RA; Whittum-Hudson JA
    Invest Ophthalmol Vis Sci; 1995 Jul; 36(8):1477-91. PubMed ID: 7601629
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.