These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 7320696)

  • 41. Chlamydia trachomatis interrupts an exocytic pathway to acquire endogenously synthesized sphingomyelin in transit from the Golgi apparatus to the plasma membrane.
    Hackstadt T; Rockey DD; Heinzen RA; Scidmore MA
    EMBO J; 1996 Mar; 15(5):964-77. PubMed ID: 8605892
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Host cell phospholipids are trafficked to and then modified by Chlamydia trachomatis.
    Wylie JL; Hatch GM; McClarty G
    J Bacteriol; 1997 Dec; 179(23):7233-42. PubMed ID: 9393685
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Production of Chlamydia trachomatis antigen and antiserum: a review.
    Terho P; Matikainen MT
    Scand J Infect Dis Suppl; 1982; 32():30-3. PubMed ID: 6753132
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Separation of the polypeptides of Chlamydia and its cell walls by polyacrylamide gel electrophoresis.
    Tamura A; Tanaka A; Manire GP
    J Bacteriol; 1974 Apr; 118(1):139-43. PubMed ID: 4821091
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Initial characterization of a chlamydial receptor on mammalian cells.
    Kaul R; Chong KL; Wenman WM
    FEMS Microbiol Lett; 1989 Jan; 48(1):65-9. PubMed ID: 2714632
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Surface components of HeLa cells that inhibit cytadherence of Chlamydia trachomatis.
    Joseph TD; Bose SK
    FEMS Microbiol Lett; 1992 Mar; 70(2):177-80. PubMed ID: 1587463
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Influence of cysteine deprivation on chlamydial differentiation from reproductive to infective life-cycle forms.
    Allan I; Hatch TP; Pearce JH
    J Gen Microbiol; 1985 Dec; 131(12):3171-7. PubMed ID: 3831232
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Differences in physicochemical and antigenic properties of chlamydial strains.
    Sayed H; Fung K; Wilt JC
    Can J Microbiol; 1976 Jul; 22(7):937-41. PubMed ID: 963615
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Azithromycin-induced block of elementary body formation in Chlamydia trachomatis.
    Engel JN
    Antimicrob Agents Chemother; 1992 Oct; 36(10):2304-9. PubMed ID: 1280057
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Interaction of Chlamydia trachomatis organisms and HeLa 229 cells.
    Kuo CC; Grayston T
    Infect Immun; 1976 Apr; 13(4):1103-9. PubMed ID: 179950
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Antibiotic susceptibility of Chlamydia trachomatis.
    Blackman HJ; Yoneda C; Dawson CR; Schachter J
    Antimicrob Agents Chemother; 1977 Dec; 12(6):673-7. PubMed ID: 931365
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Association of Chlamydia trachomatis with mammalian and cultured insect cells lacking putative chlamydial receptors.
    Allan I; Pearce JH
    Microb Pathog; 1987 Jan; 2(1):63-70. PubMed ID: 3507553
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Productive Chlamydia trachomatis lymphogranuloma venereum 434 infection in cells with augmented or inactivated autophagic activities.
    Pachikara N; Zhang H; Pan Z; Jin S; Fan H
    FEMS Microbiol Lett; 2009 Mar; 292(2):240-9. PubMed ID: 19187200
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Disulfide-linked oligomers of the major outer membrane protein of chlamydiae.
    Newhall WJ; Jones RB
    J Bacteriol; 1983 May; 154(2):998-1001. PubMed ID: 6841322
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Differential sensitivities of Chlamydia trachomatis strains to inhibitory effects of gamma interferon.
    Morrison RP
    Infect Immun; 2000 Oct; 68(10):6038-40. PubMed ID: 10992517
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Influence of lectins, hexoses, and neuraminidase on the association of purified elementary bodies of Chlamydia trachomatis UW-31 with HeLa cells.
    Bose SK; Smith GB; Paul RG
    Infect Immun; 1983 Jun; 40(3):1060-7. PubMed ID: 6687878
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Enhancement of Chlamydia trachomatis infectious progeny by cultivation of HeLa 229 cells treated with DEAE-dextran and cycloheximide.
    Sabet SF; Simmons J; Caldwell HD
    J Clin Microbiol; 1984 Aug; 20(2):217-22. PubMed ID: 6208215
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Different growth rates of Chlamydia trachomatis biovars reflect pathotype.
    Miyairi I; Mahdi OS; Ouellette SP; Belland RJ; Byrne GI
    J Infect Dis; 2006 Aug; 194(3):350-7. PubMed ID: 16826483
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Parasite-specified phagocytosis of Chlamydia psittaci and Chlamydia trachomatis by L and HeLa cells.
    Byrne GI; Moulder JW
    Infect Immun; 1978 Feb; 19(2):598-606. PubMed ID: 344217
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Use of cycloheximide to study independent lipid metabolism of Chlamydia trachomatis cultivated in mouse L cells grown in serum-free medium.
    Reed SI; Anderson LE; Jenkin HM
    Infect Immun; 1981 Feb; 31(2):668-73. PubMed ID: 7216466
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.