These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 7321576)

  • 1. A computer-aided method for the quantitative analysis of dendritic arborizations reconstructed from serial sections.
    Yelnik J; Percheron G; Perbos J; François C
    J Neurosci Methods; 1981 Dec; 4(4):347-64. PubMed ID: 7321576
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Golgi analysis of the primate globus pallidus. II. Quantitative morphology and spatial orientation of dendritic arborizations.
    Yelnik J; Percheron G; François C
    J Comp Neurol; 1984 Aug; 227(2):200-13. PubMed ID: 6470213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Morphological taxonomy of the neurons of the primate striatum.
    Yelnik J; François C; Percheron G; Tandé D
    J Comp Neurol; 1991 Nov; 313(2):273-94. PubMed ID: 1722488
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distortions induced in neuronal quantification by camera lucida analysis: comparisons using a semi-automated data acquisition system.
    DeVoogd TJ; Chang FL; Floeter MK; Jencius MJ; Greenough WT
    J Neurosci Methods; 1981 Feb; 3(3):285-94. PubMed ID: 6163933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Golgi study of the primate substantia nigra. II. Spatial organization of dendritic arborizations in relation to the cytoarchitectonic boundaries and to the striatonigral bundle.
    François C; Yelnik J; Percheron G
    J Comp Neurol; 1987 Nov; 265(4):473-93. PubMed ID: 3123530
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A fast 3-dimensional neuronal tree reconstruction system that uses cubic polynomials to estimate dendritic curvature.
    Wolf E; Birinyi A; Pomahazi S
    J Neurosci Methods; 1995 Dec; 63(1-2):137-45. PubMed ID: 8788058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Principal component analysis: a suitable method for the 3-dimensional study of the shape, dimensions and orientation of dendritic arborizations.
    Yelnik J; Percheron G; François C; Burnod Y
    J Neurosci Methods; 1983 Oct; 9(2):115-25. PubMed ID: 6645604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Golgi study of the primate substantia nigra. I. Quantitative morphology and typology of nigral neurons.
    Yelnik J; François C; Percheron G; Heyner S
    J Comp Neurol; 1987 Nov; 265(4):455-72. PubMed ID: 3123529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neurolucida Lucivid versus Neurolucida camera: A quantitative and qualitative comparison of three-dimensional neuronal reconstructions.
    Anderson K; Yamamoto E; Kaplan J; Hannan M; Jacobs B
    J Neurosci Methods; 2010 Feb; 186(2):209-14. PubMed ID: 19963008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accurate three-dimensional reconstruction of neuronal distributions in brain: reconstruction of the rat nucleus locus coeruleus.
    Foote SL; Loughlin SE; Cohen PS; Bloom FE; Livingston RB
    J Neurosci Methods; 1980 Dec; 3(2):159-73. PubMed ID: 7206782
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The somatodendritic domain of substantia nigra pars reticulata projection neurons in the rat.
    Cebrián C; Parent A; Prensa L
    Neurosci Res; 2007 Jan; 57(1):50-60. PubMed ID: 17049656
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generation, description and storage of dendritic morphology data.
    Ascoli GA; Krichmar JL; Nasuto SJ; Senft SL
    Philos Trans R Soc Lond B Biol Sci; 2001 Aug; 356(1412):1131-45. PubMed ID: 11545695
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphometric descriptors and cable modelling of dendritic arborizations based on 3-dimensional reconstructions.
    Wolf E; Birinyi A; Puskár Z
    Acta Biol Hung; 1996; 47(1-4):427-39. PubMed ID: 9124012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hamster supraoptic nucleus: cytoarchitectural, morphometric, and three-dimensional reconstruction.
    Navarro A; Tolivia J; Alvarez-Uría M
    Anat Rec; 1994 Dec; 240(4):572-8. PubMed ID: 7879908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of thick brain sections by obverse-reverse computer microscopy: application of a new, high clarity Golgi-Nissl stain.
    Glaser EM; Van der Loos H
    J Neurosci Methods; 1981 Aug; 4(2):117-25. PubMed ID: 6168870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Postnatal development of lamina III/IV nonpyramidal neurons in rabbit auditory cortex: quantitative and spatial analyses of Golgi-impregnated material.
    McMullen NT; Goldberger B; Glaser EM
    J Comp Neurol; 1988 Dec; 278(1):139-55. PubMed ID: 2463295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The problem of the morphological noise in reconstructed dendritic arborizations.
    Horcholle-Bossavit G; Gogan P; Ivanov Y; Korogod S; Tyc-Dumont S
    J Neurosci Methods; 2000 Jan; 95(1):83-93. PubMed ID: 10776818
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The dendritic trees of Purkinje cells: a computer assisted analysis of HRP labeled neurons in organotypic cultures of kitten cerebellum.
    Calvet MC; Calvet J; Camacho R; Eude D
    Brain Res; 1983 Dec; 280(2):199-215. PubMed ID: 6197140
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New developments in an "expanded stick" model for coding, graphic representation and metric analysis of tracer-filled or Golgi-impregnated neurons, including spines and varicosities.
    Freire M
    J Neurosci Methods; 1991 Mar; 37(1):71-9. PubMed ID: 1712880
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Postnatal differentiation and growth of cat entopeduncular neurons. A transient spiny period associated with branch elongation.
    Dvergsten CL; Hull CD; Levine MS; Adinolfi AM; Buchwald NA
    Brain Res; 1986 Jan; 389(1-2):239-51. PubMed ID: 3948010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.