These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 7321578)

  • 1. Quantitative ionophoresis of catecholamines using multibarrel carbon fibre microelectrodes.
    Armstrong-James M; Fox K; Kruk ZL; Millar J
    J Neurosci Methods; 1981 Dec; 4(4):385-406. PubMed ID: 7321578
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of the concentration of 5-hydroxytryptamine ejected during iontophoresis using multibarrel carbon fibre microelectrodes.
    Kruk ZL; Armstrong-James M; Millar J
    Life Sci; 1980 Dec; 27(22):2093-8. PubMed ID: 7207009
    [No Abstract]   [Full Text] [Related]  

  • 3. Simultaneous real-time amperometric measurement of catecholamines and serotonin at carbon fibre 'dident' microelectrodes.
    Pennington JM; Millar J; L Jones CP; Owesson CA; McLaughlin DP; Stamford JA
    J Neurosci Methods; 2004 Dec; 140(1-2):5-13. PubMed ID: 15589328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved techniques for examining rapid dopamine signaling with iontophoresis.
    Herr NR; Wightman RM
    Front Biosci (Elite Ed); 2013 Jan; 5(1):249-57. PubMed ID: 23276986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo voltammetry: promise and perspective.
    Stamford JA
    Brain Res; 1985 Oct; 357(2):119-35. PubMed ID: 2864988
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polarographic assay of iontophoretically applied dopamine and low-noise unit recording using a multibarrel carbon fibre microelectrode.
    Millar J; Armstrong-James M; Kruk ZL
    Brain Res; 1981 Feb; 205(2):419-424. PubMed ID: 7470875
    [No Abstract]   [Full Text] [Related]  

  • 7. Differential voltammetric measurement of catecholamines and ascorbic acid at surface-modified carbon filament microelectrodes.
    Plotsky PM
    Brain Res; 1982 Mar; 235(1):179-84. PubMed ID: 7188324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantification of noradrenaline iontophoresis.
    Armstrong-James M; Millar J; Kruk ZL
    Nature; 1980 Nov; 288(5787):181-3. PubMed ID: 7432519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Response times of carbon fiber microelectrodes to dynamic changes in catecholamine concentration.
    Venton BJ; Troyer KP; Wightman RM
    Anal Chem; 2002 Feb; 74(3):539-46. PubMed ID: 11838672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo voltammetric measurement of evoked extracellular dopamine in the rat basolateral amygdaloid nucleus.
    Garris PA; Wightman RM
    J Physiol; 1994 Jul; 478 ( Pt 2)(Pt 2):239-49. PubMed ID: 7965845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo electrochemical detection of catechols in the neostriatum of anaesthetized rats: dopamine or DOPAC?
    Gonon F; Buda M; Cespuglio R; Jouvet M; Pujol JF
    Nature; 1980 Aug; 286(5776):902-4. PubMed ID: 7412872
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unmasking the Effects of L-DOPA on Rapid Dopamine Signaling with an Improved Approach for Nafion Coating Carbon-Fiber Microelectrodes.
    Qi L; Thomas E; White SH; Smith SK; Lee CA; Wilson LR; Sombers LA
    Anal Chem; 2016 Aug; 88(16):8129-36. PubMed ID: 27441547
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon fibre microelectrodes.
    Armstrong-James M; Millar J
    J Neurosci Methods; 1979 Oct; 1(3):279-87. PubMed ID: 544972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transport of an antihypoxic drug stobadine across the blood-brain barrier in rat striatum and its influence on catecholamine-oxidative current: a voltammetric study under normal and anoxic/ischaemic conditions.
    Pavlásek J; Haburcák M; Masánová C; Stolc S
    Physiol Res; 1996; 45(3):193-204. PubMed ID: 9200210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon-fiber microelectrodes modified with 4-sulfobenzene have increased sensitivity and selectivity for catecholamines.
    Hermans A; Seipel AT; Miller CE; Wightman RM
    Langmuir; 2006 Feb; 22(5):1964-9. PubMed ID: 16489775
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The metabolism of tritiated dopamine in regions of the rat brain in vivo. I. The separation of catecholamines and their metabolites.
    Taylor KM; Laverty R
    J Neurochem; 1969 Sep; 16(9):1361-6. PubMed ID: 5808103
    [No Abstract]   [Full Text] [Related]  

  • 17. Interference by pH and Ca2+ ions during measurements of catecholamine release in slices of rat amygdala with fast-scan cyclic voltammetry.
    Jones SR; Mickelson GE; Collins LB; Kawagoe KT; Wightman RM
    J Neurosci Methods; 1994 Apr; 52(1):1-10. PubMed ID: 8090011
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo selective monitoring of basal levels of cerebral dopamine using voltammetry with Nafion modified (NA-CRO) carbon fibre micro-electrodes.
    Crespi F; Möbius C
    J Neurosci Methods; 1992 May; 42(3):149-61. PubMed ID: 1501500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A simple and reliable method for construction of parallel multibarrel microelectrodes.
    Verberne AJ; Owens NC; Jackman GP
    Brain Res Bull; 1995; 36(1):107-8. PubMed ID: 7882042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of morphine on the transport of dopamine into mouse brain slices.
    Hitzemann RJ; Loh HH
    Eur J Pharmacol; 1973 Feb; 21(2):121-9. PubMed ID: 4348734
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.