These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 7322079)

  • 1. p(42)Be neutron therapy beams: dose rate and penetration as a function of target thickness and beam filtration.
    Rosenberg I; Awschalom M; Kuo TY; Tom JL
    Med Phys; 1981; 8(6):808-12. PubMed ID: 7322079
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of target thickness and backstop material on proton-produced neutron beams for radiotherapy.
    Awschalom M; Rosenberg I; Kuo TY; Tom JL
    Med Phys; 1980; 7(5):495-502. PubMed ID: 6252431
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dosimetric considerations of d(15) + Be and p(26) + Be neutron beams from an isocentric cyclotron facility.
    Nair RP; Al-Siari A; Skaggs LS
    Med Phys; 1986; 13(2):207-10. PubMed ID: 3702818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biological intercomparisons of neutron beams used for radiotherapy generated by p(+)-->Be in hospital-based cyclotrons.
    Hall EJ; Astor M; Brenner DJ
    Br J Radiol; 1992 Jan; 65(769):66-71. PubMed ID: 1336696
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational assessment of deep-seated tumor treatment capability of the 9Be(d,n)10B reaction for accelerator-based boron neutron capture therapy (AB-BNCT).
    Capoulat ME; Minsky DM; Kreiner AJ
    Phys Med; 2014 Mar; 30(2):133-46. PubMed ID: 23880544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conceptual design of beryllium targets for the generation of neutron beams for radiation therapy by the (p,n) reaction.
    Awschalom M; Rosenberg I
    Med Phys; 1980; 7(5):492-4. PubMed ID: 6252430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dosimetry of clinical neutron and proton beams: an overview of recommendations.
    Vynckier S; ;
    Radiat Prot Dosimetry; 2004; 110(1-4):565-72. PubMed ID: 15353710
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dosimetric effects of beam size and collimation of epithermal neutrons for boron neutron capture therapy.
    Yanch JC; Harling OK
    Radiat Res; 1993 Aug; 135(2):131-45. PubMed ID: 8367586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dosimetric properties of the fast neutron therapy beams at TAMVEC.
    Smith AR; Almond PR; Smathers JB; Otte VA
    Radiology; 1974 Oct; 113(1):187-93. PubMed ID: 4214099
    [No Abstract]   [Full Text] [Related]  

  • 10. Physical characteristics of a clinical d(48.5)+Be neutron therapy beam produced by a superconducting cyclotron.
    Maughan RL; Yudelev M
    Med Phys; 1995 Sep; 22(9):1459-65. PubMed ID: 8531873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in relative biological effectiveness with depth of the Clatterbridge neutron therapy beam.
    Hornsey S; Myers R; Parnell CJ; Bonnett DE; Blake SW; Bewley DK
    Br J Radiol; 1988 Nov; 61(731):1058-62. PubMed ID: 3145090
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radiosensitivity variations in human tumor cell lines exposed in vitro to p(66)/Be neutrons or 60Co gamma-rays.
    Slabbert JP; Theron T; Serafin A; Jones DT; Böhm L; Schmitt G
    Strahlenther Onkol; 1996 Oct; 172(10):567-72. PubMed ID: 8899008
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization parameters for BDE in BNCT using near threshold 7Li(p,n)7Be direct neutrons.
    Bengua G; Kobayashi T; Tanaka K; Nakagawa Y
    Appl Radiat Isot; 2004 Nov; 61(5):1003-8. PubMed ID: 15308183
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modification of the 50% maximum dose depth for 41-MeV (p+,Be) neutrons by use of filtration and/or transmission targets.
    Smathers JB; Graves RG; Earls L; Otte VA; Almond PR
    Med Phys; 1982; 9(6):856-9. PubMed ID: 6298587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Empirical description and Monte Carlo simulation of fast neutron pencil beams as basis of a treatment planning system.
    Bourhis-Martin E; Meissner P; Rassow J; Baumhoer W; Schmidt R; Sauerwein W
    Med Phys; 2002 Aug; 29(8):1670-7. PubMed ID: 12201412
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High energy fast neutrons from the Harwell variable energy cyclotron. I. Physical characteristics.
    Goodhead DT; Berry RJ; Bance DA; Gray P; Stedeford JB
    AJR Am J Roentgenol; 1977 Oct; 129(4):709-16. PubMed ID: 409249
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physical characterization of neutron beams produced by protons and deuterons of various energies bombarding beryllium and lithium targets of several thicknesses.
    Amols HI; Dicello F; Awschalom M; Coulson L; Johnsen SW; Theus RB
    Med Phys; 1977; 4(6):486-93. PubMed ID: 412047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An examination of some methods of improving the depth dose characteristics of cyclotron-produced fast neutron beams.
    Parnell CJ
    Br J Radiol; 1971 Aug; 44(524):612-7. PubMed ID: 5558706
    [No Abstract]   [Full Text] [Related]  

  • 19. Depth dose characteristics and beam profile properties of cyclotron-produced neutron beams.
    Parnell CJ
    Eur J Cancer (1965); 1974 May; 10(5):335-8. PubMed ID: 4216504
    [No Abstract]   [Full Text] [Related]  

  • 20. Radiobiological studies with therapeutic neutron beams generated by p+ leads to Be or d+ leads to Be.
    Hall EJ; Zaider M; Bird R; Astor M; Roberts W
    Br J Radiol; 1982 Sep; 55(657):640-4. PubMed ID: 6289956
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.