BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 7324083)

  • 1. Role of endogenous and exogenous cholesterol in liver as the precursor for bile acids in rats.
    Ayaki Y; Tsuma-Date T; Endo S; Ogura M
    Steroids; 1981 Nov; 38(5):495-509. PubMed ID: 7324083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An in vivo evaluation in man of the transfer of esterified cholesterol between lipoproteins and into the liver and bile.
    Schwartz CC; Vlahcevic ZR; Halloran LG; Swell L
    Biochim Biophys Acta; 1981 Jan; 663(1):143-62. PubMed ID: 7011409
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Incorporation of 14C-mevalonate into biliary cholesterol and bile acids by perfused rat liver: effect of plasma and individual lipoproteins.
    Subbiah MT
    Steroids; 1980 Oct; 36(4):497-505. PubMed ID: 7444999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Delivery of high-density lipoprotein free and esterified cholesterol to bile by the perfused monkey liver.
    Scobey MW; Johnson FL; Rudel LL
    Am J Physiol; 1989 Oct; 257(4 Pt 1):G644-52. PubMed ID: 2801946
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for high-density lipoprotein-free cholesterol as the primary precursor for bile-acid synthesis in man.
    Halloran LG; Schwartz CC; Vlahcevic ZR; Nisman RM; Swell L
    Surgery; 1978 Jul; 84(1):1-7. PubMed ID: 208187
    [No Abstract]   [Full Text] [Related]  

  • 6. The relationship between HDL-, LDL-, liposomes-free cholesterol, biliary cholesterol and bile salts in the rat.
    Esnault-Dupuy C; Chanussot F; LaFont H; Chabert C; Hauton J
    Biochimie; 1987 Jan; 69(1):45-52. PubMed ID: 3101750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bile acids regulate hepatic low density lipoprotein receptor activity in the hamster by altering cholesterol flux across the liver.
    Spady DK; Stange EF; Bilhartz LE; Dietschy JM
    Proc Natl Acad Sci U S A; 1986 Mar; 83(6):1916-20. PubMed ID: 3456612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bile salts in submicellar concentrations promote bidirectional cholesterol transfer (exchange) as a function of their hydrophobicity.
    Vlahcevic ZR; Gurley EC; Heuman DM; Hylemon PB
    J Lipid Res; 1990 Jun; 31(6):1063-71. PubMed ID: 2373956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective uptake of cholesteryl esters from apolipoprotein-E-free high-density lipoproteins by rat parenchymal cells in vivo is efficiently coupled to bile acid synthesis.
    Pieters MN; Schouten D; Bakkeren HF; Esbach B; Brouwer A; Knook DL; van Berkel TJ
    Biochem J; 1991 Dec; 280 ( Pt 2)(Pt 2):359-65. PubMed ID: 1747108
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hepatic uptake and processing of cholesterol and cholesteryl ester from chylomicron remnants: an in vivo study in the rat.
    Bravo E; Guldur T; Botham KM; Mayes PA; Cantafora A
    Biochim Biophys Acta; 1992 Jan; 1123(1):85-91. PubMed ID: 1730049
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for distinct precursor pools for biliary cholesterol and primary bile acids in cebus and cynomolgus monkeys.
    Stephan ZF; Hayes KC
    Lipids; 1985 Jun; 20(6):343-9. PubMed ID: 4021742
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biliary excretion of apolipoprotein B by the isolated perfused rat liver. Relationship to receptor-mediated uptake of human low-density lipoprotein and biliary lipid secretion.
    Kawamoto T; Mao SJ; LaRusso NF
    Gastroenterology; 1987 May; 92(5 Pt 1):1236-42. PubMed ID: 3104128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Difference between cholic acid and chenodeoxycholic acid in dependence upon cholesterol of hepatic and plasmatic sources as the precursor in rats.
    Ayaki Y; Ogura Y; Kitayama S; Endo S; Ogura M
    Steroids; 1983 Apr; 41(4):509-20. PubMed ID: 6658889
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Side-chain oxidation of lipoprotein-bound [24,25-3H]cholesterol in the rat: comparison of HDL and LDL and implications for bile acid synthesis.
    Miller LK; Tiell ML; Paul I; Spaet TH; Rosenfeld RS
    J Lipid Res; 1982 Feb; 23(2):335-44. PubMed ID: 7077148
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Receptor-mediated uptake of low density lipoprotein stimulates bile acid synthesis by cultured rat hepatocytes.
    Junker LH; Davis RA
    J Lipid Res; 1989 Dec; 30(12):1933-41. PubMed ID: 2621420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The synthesis of bile acids in perfused rat liver subjected to chronic biliary drainage.
    Percy-Robb IW; Boyd GS
    Biochem J; 1970 Jul; 118(3):519-30. PubMed ID: 5472179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preferential utilization of newly synthesized cholesterol as substrate for bile acid biosynthesis. An in vivo study using 18O2-inhalation technique.
    Björkhem I; Lewenhaupt A
    J Biol Chem; 1979 Jun; 254(12):5252-6. PubMed ID: 447646
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Newly synthesized hepatic cholesterol as precursor for cholesterol and bile acids in rat bile.
    Normann PT; Norum KR
    Scand J Gastroenterol; 1976; 11(4):427-32. PubMed ID: 935805
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bile acid synthesis in the isolated, perfused rabbit liver.
    Mosbach EH; Rothschild MA; Bekersky I; Oratz M; Mongelli J
    J Clin Invest; 1971 Aug; 50(8):1720-30. PubMed ID: 5097576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preferential utilization of free cholesterol from high-density lipoproteins for biliary cholesterol secretion in man.
    Schwartz CC; Halloran LG; Vlahcevic ZR; Gregory DH; Swell L
    Science; 1978 Apr; 200(4337):62-4. PubMed ID: 204996
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.