These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 732584)

  • 1. Measurement of the change of electrical potentials and currents across biomembranes in the range of nanoseconds to seconds.
    Witt HT
    Methods Enzymol; 1978; 54():61-4. PubMed ID: 732584
    [No Abstract]   [Full Text] [Related]  

  • 2. [Structure and function of chromatophore membrane (author's transl)].
    Horio T; Kakuno T; Erabi T
    Tanpakushitsu Kakusan Koso; 1975 Mar; 20(4):352-65. PubMed ID: 240187
    [No Abstract]   [Full Text] [Related]  

  • 3. Sidedness of membrane structures in Rhodopseudomonas sphaeroides. Electrochemical titration of the spectrum changes of carotenoid in spheroplasts, spheroplast membrane vesicles and chromatophores.
    Matsuura K; Nishimura M
    Biochim Biophys Acta; 1977 Mar; 459(3):483-91. PubMed ID: 300247
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxonol dyes as monitors of membrane potential. Their behavior in photosynthetic bacteria.
    Bashford CL; Chance B; Prince RC
    Biochim Biophys Acta; 1979 Jan; 545(1):46-57. PubMed ID: 103582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of surface potential on the intramembrane electrical field measured with carotenoid spectral shift in chromatophores from Rhodopseudomonas sphaeroides.
    Matsuura K; Masamoto K; Itoh S; Nishimura M
    Biochim Biophys Acta; 1979 Jul; 547(1):91-102. PubMed ID: 37904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The kinetics of light induced carotenoid changes in Rhodopseudomonas spheroides and their relation to electrical field generation across the chromatophore membrane.
    Jackson JB; Crofts AR
    Eur J Biochem; 1971 Jan; 18(1):120-30. PubMed ID: 5540508
    [No Abstract]   [Full Text] [Related]  

  • 7. [Basic structure of biomembranes and functional proteins].
    Kagawa Y
    Nihon Rinsho; 1979; 37(7):2702-13. PubMed ID: 393856
    [No Abstract]   [Full Text] [Related]  

  • 8. Measurement of transmembrane potentials in Rhodospirillum rubrum chromatophores with an oxacarbocyanine dye.
    Pick U; Avron M
    Biochim Biophys Acta; 1976 Jul; 440(1):189-204. PubMed ID: 820380
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Light-induced blue shift of the carotenoid spectrum in chromatophores of Chromatium vinosum strain D.
    Bowyer JR; Crofts AR
    Arch Biochem Biophys; 1980 Jul; 202(2):582-91. PubMed ID: 7458337
    [No Abstract]   [Full Text] [Related]  

  • 10. The coupling between protonmotive force and the NAD(P)+ transhydrogenase in chromatophores from photosynthetic bacteria.
    Cotton NP; Lever TM; Nore BF; Jones MR; Jackson JB
    Eur J Biochem; 1989 Jul; 182(3):593-603. PubMed ID: 2546762
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the coupling of electrical events at the membranes of energized chloroplasts in intact plant leaf cells.
    Vredenberg WJ; Tonk WJ
    FEBS Lett; 1974 Jun; 42(2):236-40. PubMed ID: 4853445
    [No Abstract]   [Full Text] [Related]  

  • 12. [P-NMR studies on biomembranes].
    Akutsu H; Kyogoku Y
    Seikagaku; 1982; 54(9):1048-63. PubMed ID: 6757337
    [No Abstract]   [Full Text] [Related]  

  • 13. The measurement of membrane potential during photosynthesis and during respiration in intact cells of Rhodopseudomonas capsulata by both electrochromism and by permeant ion redistribution.
    Clark AJ; Jackson JB
    Biochem J; 1981 Nov; 200(2):389-97. PubMed ID: 7340838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vectorial electron flow across the thylakoid membrane. Further evidence by kinetic measurements with an electrochromic and electrical method.
    Witt HT; Zickler A
    FEBS Lett; 1974 Feb; 39(2):205-8. PubMed ID: 4855379
    [No Abstract]   [Full Text] [Related]  

  • 15. Membrane patches and whole-cell membranes: a comparison of electrical properties in rat clonal pituitary (GH3) cells.
    Fernandez JM; Fox AP; Krasne S
    J Physiol; 1984 Nov; 356():565-85. PubMed ID: 6097678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectral and energetic characteristics of the photoactive particles obtained from chromatophores of the green bacterium Chlorobium limicola.
    Barsky EL; Borisov AYu ; Fetisova ZG; Samuilov VD
    FEBS Lett; 1974 Jun; 42(3):275-8. PubMed ID: 4854357
    [No Abstract]   [Full Text] [Related]  

  • 17. [On the mechanism of generation of electrical potential differences in cell biomembranes].
    Melkikh AV; Seleznev VD
    Biofizika; 1999; 44(3):474-8. PubMed ID: 10439863
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The electrochemical proton gradient generated by light in membrane vesicles and chromatophores from Rhodopseudomonas sphaeroides.
    Michels PA; Konings WN
    Eur J Biochem; 1978 Apr; 85(1):147-55. PubMed ID: 25184
    [No Abstract]   [Full Text] [Related]  

  • 19. [Cyclic electron transfer and membrane potential generation in chromatophores on non-sulfur bacteria Rhodospirillum rubrum].
    Remennikov VG; Samuilov VD
    Biokhimiia; 1980 Jul; 45(7):1298-304. PubMed ID: 6783130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transient absorption spectroscopy in study of processes and dynamics in biology.
    van Amerongen H; van Grondelle R
    Methods Enzymol; 1995; 246():201-26. PubMed ID: 7752925
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.