BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 7325993)

  • 21. Linoleate and alpha-linolenate synthesis by isolated spinach (Spinacia oleracea) chloroplasts.
    Roughan PG; Mudd JB; McManus TT; Slack CR
    Biochem J; 1979 Dec; 184(3):571-4. PubMed ID: 540049
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Glycerolipid labelling kinetics in isolated intact chloroplasts.
    Gardiner SE; Roughan PG; Browse J
    Biochem J; 1984 Dec; 224(2):637-43. PubMed ID: 6517868
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High rates of [1-14C]acetate incorporation into the lipid of isolated spinach chloroplasts.
    Roughan PG; Slack CR; Holland R
    Biochem J; 1976 Sep; 158(3):593-601. PubMed ID: 985452
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fat metabolism in higher plants. I. The biosynthesis of polyunsaturated fatty acids by isolated spinach chloroplasts.
    Kannangara CG; Stumpf PK
    Arch Biochem Biophys; 1972 Feb; 148(2):414-24. PubMed ID: 4336347
    [No Abstract]   [Full Text] [Related]  

  • 25. Fatty acid synthesis: from CO2 to functional genomics.
    Ohlrogge J; Pollard M; Bao X; Focke M; Girke T; Ruuska S; Mekhedov S; Benning C
    Biochem Soc Trans; 2000 Dec; 28(6):567-73. PubMed ID: 11171129
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fatty acid synthesis by isolated chromoplasts from the daffodil. [14C]Acetate incorporation and distribution of labelled acids.
    Kleinig H; Liedvogel B
    Eur J Biochem; 1978 Feb; 83(2):499-505. PubMed ID: 631131
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fat metabolism in higher plants. Production of short- and medium-chain acyl-acyl carrier protein by spinach stroma preparations treated with cerulenin.
    Packter NM; Stumpf PK
    Biochim Biophys Acta; 1975 Dec; 409(3):274-82. PubMed ID: 1203245
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The role of chloroplasts and microsomal fractions in polar-lipid synthesis from [1-14C]acetate by cell-free preparations from spinach (Spinacia oleracea) leaves.
    Roughan PG; Holland R; Slack CR
    Biochem J; 1980 Apr; 188(1):17-24. PubMed ID: 7406878
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metabolism of trans-3-hexadecenoic acid in broad bean.
    Harwood JL; James AT
    Eur J Biochem; 1975 Jan; 50(2):325-34. PubMed ID: 1126340
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fatty acid biosynthesis in the leaves of barley, wheat and pea.
    Wharfe J; Harwood JL
    Biochem J; 1978 Jul; 174(1):163-9. PubMed ID: 697749
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Acetate binding of spinach chloroplasts as a facet of fatty acid synthesis.
    Devor KA; Mudd JB
    Plant Physiol; 1968 Jun; 43(6):853-8. PubMed ID: 5662385
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The synthesis of fatty acids in avocado mesocarp and cauliflower bud tissue.
    Weaire PJ; Kekwick RG
    Biochem J; 1975 Feb; 146(2):425-37. PubMed ID: 1156380
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The site of fatty acid biosynthesis in the avocado pear.
    Weaire PJ; Kekwick RG
    Biochem J; 1970 Oct; 119(5):48P-49P. PubMed ID: 5492822
    [No Abstract]   [Full Text] [Related]  

  • 34. The incorporation of [14C]acetate into the constituent fatty acids of monogalactosyldiglyceride by isolated spinach chloroplasts.
    McKee JW; Hawke JC
    Arch Biochem Biophys; 1979 Oct; 197(1):322-32. PubMed ID: 543720
    [No Abstract]   [Full Text] [Related]  

  • 35. On the energy requirements of fatty acid synthesis in spinach chloroplasts in the light and in the dark.
    Kleinig H; Liedvogel B
    FEBS Lett; 1979 May; 101(2):339-42. PubMed ID: 446757
    [No Abstract]   [Full Text] [Related]  

  • 36. Lipid biosynthesis by isolated plastids from greening pea, Pisum sativum.
    Panter RA; Boardman NK
    J Lipid Res; 1973 Nov; 14(6):664-71. PubMed ID: 4742560
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Activities of 3-hydroxy-3-methylglutaryl-CoA reductase and acetyl-CoA carboxylase and rate of biosynthesis of mevalonic acid, squalene, sterols and fatty acids from [1-14C]acetyl-CoA and [2-14C]malonyl-CoA in rat liver: changes induced by daily rhythm].
    Poliakova ED; Dizhe EB; Klimova TA; Denisenko TV; Vasil'eva LE
    Biokhimiia; 1981 Jan; 46(1):126-39. PubMed ID: 6113851
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fatty acid synthesis: a potential selective target for antineoplastic therapy.
    Kuhajda FP; Jenner K; Wood FD; Hennigar RA; Jacobs LB; Dick JD; Pasternack GR
    Proc Natl Acad Sci U S A; 1994 Jul; 91(14):6379-83. PubMed ID: 8022791
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fat metabolism in higher plants. XXXIX. Properties of a soluble fatty acid synthesizing system from lettuce chloroplasts.
    Brooks JL; Stumpf PK
    Arch Biochem Biophys; 1966 Sep; 116(1):108-16. PubMed ID: 5336021
    [No Abstract]   [Full Text] [Related]  

  • 40. Carbon flux and fatty acid synthesis in plants.
    Rawsthorne S
    Prog Lipid Res; 2002 Mar; 41(2):182-96. PubMed ID: 11755683
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.