These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 7326044)

  • 1. Studies on the toxicity of chlorinated p-nitrobiphenyl ether. I-Methemoglobin formation in vitro and in vivo induced by nitroso and amino derivatives of chlorinated biphenyl ether.
    Miyauchi M; Koizumi M; Uematsu T
    Biochem Pharmacol; 1981 Dec; 30(24):3341-6. PubMed ID: 7326044
    [No Abstract]   [Full Text] [Related]  

  • 2. Biochemical processes involved in ferrihemoglobin formation by monohydroxyaniline derivatives in erythrocytes of birds and mammals.
    Blaauboer BJ; van Holsteijn CW; Wit JG
    Comp Biochem Physiol C Comp Pharmacol; 1979; 62C(2):199-203. PubMed ID: 37027
    [No Abstract]   [Full Text] [Related]  

  • 3. Effects of ascorbate on methemoglobin reduction in intact red cells.
    Sullivan SG; Stern A
    Arch Biochem Biophys; 1982 Feb; 213(2):590-4. PubMed ID: 7073292
    [No Abstract]   [Full Text] [Related]  

  • 4. Mutagenic activity of chlorinated 4-nitrobiphenyl ethers and their nitroso- and amino-derivatives.
    Miyauchi M; Haga M; Takou Y; Uematsu T
    Chem Biol Interact; 1983; 44(1-2):133-41. PubMed ID: 6342825
    [No Abstract]   [Full Text] [Related]  

  • 5. The metabolism of 4-aminobiphenyl in rat. IV. Ferrihaemoglobin formation by 4-aminobiphenyl metabolites.
    Karreth S; Lenk W
    Xenobiotica; 1991 Jul; 21(7):971-7. PubMed ID: 1776272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [The glucose metabolism in erythrocytes during the methemoglobin formation through phenylhydroxylamine].
    Wagner J; Burger A; Uehleke H; Götz E
    Folia Haematol Int Mag Klin Morphol Blutforsch; 1968; 89(4):536-48. PubMed ID: 4176856
    [No Abstract]   [Full Text] [Related]  

  • 7. [Hydroxylamino- and nitrosobiphenyl: biological oxidation products of 4-aminobiphenyl and intermediates of 4-nitrobiphenyl reduction].
    Uehleke H; Nestel K
    Naunyn Schmiedebergs Arch Exp Pathol Pharmakol; 1967; 257(2):151-71. PubMed ID: 4385670
    [No Abstract]   [Full Text] [Related]  

  • 8. Rapid reduction of methemoglobin in rat bone marrow erythroid cells.
    Yubisui T; Takeshita M; Hultquist DE
    Am J Hematol; 1990 May; 34(1):5-7. PubMed ID: 2327404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. N-hydroxy-N-arylacetamides. III: Mechanism of haemoglobin oxidation by N-hydroxy-4-chloroacetanilide in erythrocytes in vitro.
    Lenk W; Sterzl H
    Xenobiotica; 1987 Apr; 17(4):499-512. PubMed ID: 3604257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitrosobenzene-induced ferrihemoglobin formation in Japanese quail erythrocytes. The significance of ferrihemoglobin reduction.
    Blaauboer BJ; van Holsteijn CW; Wit JG
    Naunyn Schmiedebergs Arch Pharmacol; 1975; 289(2):127-35. PubMed ID: 1165790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitrogen oxidation in ferrihaemoglobin formation.
    Kiese M
    Xenobiotica; 1971; 1(4):553-62. PubMed ID: 4152973
    [No Abstract]   [Full Text] [Related]  

  • 12. Effect of hydroxychlorodiphenyl ethers (chlorinated pre-and isopredioxins) on erythrocyte membrane adenosinetriphosphatase activity.
    Lorusso DJ; Miller TL; Deinzer ML
    J Toxicol Environ Health; 1981; 8(1-2):215-23. PubMed ID: 6460116
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Xylite as a substrate for methemoglobin reduction in red blood cells].
    Asakura T; Adachi K; Minakami S; Yoshikawa H; Nakao M
    Z Gesamte Exp Med Einschl Exp Chir; 1968; 145(3):266-9. PubMed ID: 5663891
    [No Abstract]   [Full Text] [Related]  

  • 14. Comparative carbohydrate catabolism and methemoglobin reduction in pig and human erythrocytes.
    Rivkin SE; Simon ER
    J Cell Physiol; 1965 Aug; 66(1):49-56. PubMed ID: 4379217
    [No Abstract]   [Full Text] [Related]  

  • 15. Acceleration of methemoglobin reduction in erythrocytes by selenium.
    Iwata H; Masukawa T; Kasamatsu S; Inoue K; Okamoto H
    Experientia; 1977 May; 33(5):678-80. PubMed ID: 862816
    [No Abstract]   [Full Text] [Related]  

  • 16. The metabolism of 4-aminobiphenyl in rat. II. Reaction of N-hydroxy-4-aminobiphenyl with rat blood in vitro.
    Heilmair R; Karreth S; Lenk W
    Xenobiotica; 1991 Jun; 21(6):805-15. PubMed ID: 1949910
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Taurine mitigates nitrite-induced methemoglobin formation and oxidative damage in human erythrocytes.
    Ansari FA; Ali SN; Mahmood R
    Environ Sci Pollut Res Int; 2017 Aug; 24(23):19086-19097. PubMed ID: 28660510
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ferrihemoglobin formation by monohydroxy aniline derivatives in erythrocytes of some avian species in comparison with mammals.
    Blaauboer BJ; van Holsteijn CW; van Holsteijn CW; Wit JG; Wit JG
    Naunyn Schmiedebergs Arch Pharmacol; 1976; 292(3):255-8. PubMed ID: 940603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of two suggested methods of deactivating organic carcinogens by molecular modification.
    Ashby J; Paton D; Lefevre PA; Styles JA; Rose FL
    Carcinogenesis; 1982; 3(11):1277-82. PubMed ID: 6758975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methemoglobin formation and reduction in canine erythrocytes characterized by inherited high Na+, K(+)-ATPase activity with normal and high glutathione concentrations.
    Ogawa E; Horii Y; Honda M; Takahashi R
    J Vet Med Sci; 1994 Oct; 56(5):873-7. PubMed ID: 7865586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.