These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 7326055)

  • 1. Inhibition and recovery of growth processes in roots of Pisum sativum L. exposed to 60-Hz electric fields.
    Robertson D; Miller MW; Cox C; Davis HT
    Bioelectromagnetics; 1981; 2(4):329-40. PubMed ID: 7326055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth rate and mitotic index analysis of Vicia faba L. roots exposed to 60-Hz electric fields.
    Inoue M; Miller MW; Cox C; Carstesen EL
    Bioelectromagnetics; 1985; 6(3):293-303. PubMed ID: 3836672
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the mechanism of 60-Hz electric field induced effects in Pisum sativum L. roots: vertical field exposures.
    Miller MW; Dooley DA; Cox C; Carstensen EL
    Radiat Environ Biophys; 1983; 22(4):293-302. PubMed ID: 6665120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 60 Hz electric field parameters associated with the perturbation of a eukaryotic cell system.
    Miller MW; Carstensen EL; Robertson D; Child SZ
    Radiat Environ Biophys; 1980; 18(4):289-300. PubMed ID: 7220793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A cytohistological analysis of roots whose growth is affected by a 60-Hz electric field.
    Brulfert A; Miller MW; Robertson D; Dooley DA; Economou P
    Bioelectromagnetics; 1985; 6(3):283-91. PubMed ID: 3836671
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Repetitive pulsed-train "off" duration mitigates reductions in root growth rates of Pisum sativum L. induced by 60-Hz electric field.
    Azadniv M; Miller MW; Brayman AA; Cox C
    Radiat Res; 1990 Oct; 124(1):62-5. PubMed ID: 2236497
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The relationship between sensitivity to 60-Hz electric fields and induced transmembrane potentials in plants root cells.
    Inoue M; Miller MW; Carstensen EL; Brayman AA
    Radiat Environ Biophys; 1985; 24(4):303-14. PubMed ID: 4080970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationship of 60-Hz electric-field parameters to the inhibition of growth of Pisum sativum roots.
    Robertson D; Miller MW; Carstensen EL
    Radiat Environ Biophys; 1981; 19(3):227-33. PubMed ID: 7267989
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proportionality of 60-Hz electric field bioeffect severity to average induced transmembrane potential magnitude in a root model system.
    Brayman AA; Miller MW
    Radiat Res; 1989 Feb; 117(2):207-13. PubMed ID: 2922466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Proliferation of bone marrow cells upon exposure to constant magnetic fields of ultra-high strength].
    Strzhizhovskiĭ AD; Galaktionova GV
    Tsitologiia; 1978 Jun; 20(6):717-20. PubMed ID: 695003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Induction of ELF transmembrane potentials in relation to power-frequency electric field bioeffects in a plant root model system. I. Relationship between applied field strength and cucurbitaceous root growth rates.
    Brayman AA; Miller MW
    Radiat Environ Biophys; 1986; 25(2):141-9. PubMed ID: 3763827
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Mitotic index of meristematic cells and root growth of Pisum sativum is affected by inositol cycle modulators].
    Dmitrieva SA; Minibaeva FV; Gordon LKh
    Tsitologiia; 2006; 48(6):475-9. PubMed ID: 16893052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of fertility and in utero effects in rats chronically exposed to a high-intensity 60-Hz electric field.
    Seto YJ; Majeau-Chargois D; Lymangrover JR; Dunlap WP; Walker CF; Hsieh ST
    IEEE Trans Biomed Eng; 1984 Nov; 31(11):693-702. PubMed ID: 6500589
    [No Abstract]   [Full Text] [Related]  

  • 14. The influence of electric field exposure on bone growth and fracture repair in rats.
    McClanahan BJ; Phillips RD
    Bioelectromagnetics; 1983; 4(1):11-9. PubMed ID: 6838665
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of radiofrequency electromagnetic fields on seed germination and root meristematic cells of Allium cepa L.
    Tkalec M; Malarić K; Pavlica M; Pevalek-Kozlina B; Vidaković-Cifrek Z
    Mutat Res; 2009 Jan; 672(2):76-81. PubMed ID: 19028599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of ambient levels of power-line-frequency electric fields on a developing vertebrate.
    Blackman CF; House DE; Benane SG; Joines WT; Spiegel RJ
    Bioelectromagnetics; 1988; 9(2):129-40. PubMed ID: 3377861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Effect of an industrial-frequency electromagnetic field on the nature of the growth and mitotic activity of cultured human fibroblast-like cells].
    Dyshlovoĭ VD; Panchuk AS; Kachura VS
    Tsitol Genet; 1981; 15(3):9-12. PubMed ID: 7256838
    [No Abstract]   [Full Text] [Related]  

  • 18. Lack of effect of electric field exposure on rats: a data re-evaluation.
    Kaufman GE; Miller MW
    Radiat Environ Biophys; 1980 Feb; 17(2):151-8. PubMed ID: 7367583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 60-Hz electric field exposure inhibits net apparent H(+)-ion excretion from excised roots of Zea mays L.
    Brayman AA; Miller MW
    Radiat Res; 1990 Jul; 123(1):22-31. PubMed ID: 2142533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of ELF (1-120 Hz) and modulated (50 Hz) RF fields on the efflux of calcium ions from brain tissue in vitro.
    Blackman CF; Benane SG; House DE; Joines WT
    Bioelectromagnetics; 1985; 6(1):1-11. PubMed ID: 3977964
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.