These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 7326062)

  • 1. Comparison of RF-induced calcium efflux from chick brain tissue at different frequencies: do the scaled power density windows align?
    Athey TW
    Bioelectromagnetics; 1981; 2(4):407-9. PubMed ID: 7326062
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Power density, field intensity, and carrier frequency determinants of RF-energy-induced calcium-ion efflux from brain tissue.
    Joines WT; Blackman CF
    Bioelectromagnetics; 1980; 1(3):271-5. PubMed ID: 7284025
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple power-density windows and their possible origin.
    Blackman CF; Kinney LS; House DE; Joines WT
    Bioelectromagnetics; 1989; 10(2):115-28. PubMed ID: 2540755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of ELF (1-120 Hz) and modulated (50 Hz) RF fields on the efflux of calcium ions from brain tissue in vitro.
    Blackman CF; Benane SG; House DE; Joines WT
    Bioelectromagnetics; 1985; 6(1):1-11. PubMed ID: 3977964
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calcium-ion efflux from brain tissue: power-density versus internal field-intensity dependencies at 50-MHz RF radiation.
    Blackman CF; Benane SG; Joines WT; Hollis MA; House DE
    Bioelectromagnetics; 1980; 1(3):277-83. PubMed ID: 7284026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Broadening of the RF power-density window for calcium-ion efflux from brain tissue.
    Joines WT; Blackman CF; Hollis MA
    IEEE Trans Biomed Eng; 1981 Aug; 28(8):568-73. PubMed ID: 7262896
    [No Abstract]   [Full Text] [Related]  

  • 7. Effect of amplitude-modulated 147 MHz radiofrequency radiation on calcium ion efflux from avian brain tissue.
    Albert EN; Slaby F; Roche J; Loftus J
    Radiat Res; 1987 Jan; 109(1):19-27. PubMed ID: 3809389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Induction of calcium-ion efflux from brain tissue by radiofrequency radiation: effect of sample number and modulation frequency on the power-density window.
    Blackman CF; Benane SG; Elder JA; House DE; Lampe JA; Faulk JM
    Bioelectromagnetics; 1980; 1(1):35-43. PubMed ID: 7284014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Off-center spherical model for dosimetry calculations in chick brain tissue.
    Gonzalez G; Nearing JC; Spiegel RJ; Joines WT
    Bioelectromagnetics; 1986; 7(2):209-21. PubMed ID: 3741494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of ELF fields on calcium-ion efflux from brain tissue in vitro.
    Blackman CF; Benane SG; Kinney LS; Joines WT; House DE
    Radiat Res; 1982 Dec; 92(3):510-20. PubMed ID: 7178417
    [No Abstract]   [Full Text] [Related]  

  • 11. Internal field strength measurements in chick forebrains at 50, 147, and 450 MHz.
    Weil CM; Spiegel RJ; Joines WT
    Bioelectromagnetics; 1984; 5(3):293-304. PubMed ID: 6487380
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of amplitude modulated RF radiation on calcium ion efflux and ODC activity in chronically exposed rat brain.
    Paulraj R; Behari J; Rao AR
    Indian J Biochem Biophys; 1999 Oct; 36(5):337-40. PubMed ID: 10844985
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Equalizing the electric field intensity within chick brain immersed in buffer solution at different carrier frequencies.
    Joines WT; Blackman CF
    Bioelectromagnetics; 1981; 2(4):411-3. PubMed ID: 7326063
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of electromagnetic fields on the efflux of calcium ions from brain tissue in vitro: a three-model analysis consistent with the frequency response up to 510 Hz.
    Blackman CF; Benane SG; Elliott DJ; House DE; Pollock MM
    Bioelectromagnetics; 1988; 9(3):215-27. PubMed ID: 3178897
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A role for the magnetic field in the radiation-induced efflux of calcium ions from brain tissue in vitro.
    Blackman CF; Benane SG; Rabinowitz JR; House DE; Joines WT
    Bioelectromagnetics; 1985; 6(4):327-37. PubMed ID: 3836676
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of frequency, irradiation geometry and polarisation on computation of SAR in human brain.
    Zhou H; Su Z; Ning J; Wang C; Xie X; Qu D; Wu K; Zhang X; Pan J; Yang G
    Radiat Prot Dosimetry; 2014 Dec; 162(4):463-8. PubMed ID: 24399107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro study of microwave effects on calcium efflux in rat brain tissue.
    Shelton WW; Merritt JH
    Bioelectromagnetics; 1981; 2(2):161-7. PubMed ID: 7295363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electromagnetic power absorption and temperature changes due to brain machine interface operation.
    Ibrahim TS; Abraham D; Rennaker RL
    Ann Biomed Eng; 2007 May; 35(5):825-34. PubMed ID: 17334681
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dosimetric evaluation and comparison of different RF exposure apparatuses used in human volunteer studies.
    Loughran SP; McKenzie RJ; Anderson V; McIntosh RL; Croft RJ
    Bioelectromagnetics; 2008 Apr; 29(3):242-3. PubMed ID: 18027863
    [No Abstract]   [Full Text] [Related]  

  • 20. Effect of ambient levels of power-line-frequency electric fields on a developing vertebrate.
    Blackman CF; House DE; Benane SG; Joines WT; Spiegel RJ
    Bioelectromagnetics; 1988; 9(2):129-40. PubMed ID: 3377861
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.