These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 7326293)

  • 21. Physiological characterization of synaptic inputs to inhibitory burst neurons from the rostral and caudal superior colliculus.
    Sugiuchi Y; Izawa Y; Takahashi M; Na J; Shinoda Y
    J Neurophysiol; 2005 Feb; 93(2):697-712. PubMed ID: 15653784
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [The existence of recurrent inhibition in the superior collicus of the rabbit].
    Mass AM
    Fiziol Zh SSSR Im I M Sechenova; 1975 Sep; 61(9):1323-30. PubMed ID: 1213194
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Single retinal ganglion cell evokes the activation of L-type Ca(2+)-mediated slow inward current in frog tectal pear-shaped neurons.
    Baginskas A; Kuras A
    Neurosci Res; 2008 Apr; 60(4):412-21. PubMed ID: 18243388
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Real-time optical imaging of naturally evoked electrical activity in intact frog brain.
    Grinvald A; Anglister L; Freeman JA; Hildesheim R; Manker A
    Nature; 1984 Apr 26-May 2; 308(5962):848-50. PubMed ID: 6717577
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Commissural mirror-symmetric excitation and reciprocal inhibition between the two superior colliculi and their roles in vertical and horizontal eye movements.
    Takahashi M; Sugiuchi Y; Shinoda Y
    J Neurophysiol; 2007 Nov; 98(5):2664-82. PubMed ID: 17728384
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Effect of electroacupuncture on the conduction of afferent signals in the superior colliculus].
    Durinian RA; Reshetniak VK; Dolgikh VG
    Patol Fiziol Eksp Ter; 1985; (1):47-9. PubMed ID: 3872440
    [No Abstract]   [Full Text] [Related]  

  • 27. Spatial frequency and temporal frequency selectivity of single cells in the pigeon optic tectum.
    Hardy O; Jassik-Gerschenfeld D
    Vision Res; 1979; 19(9):1001-4. PubMed ID: 532114
    [No Abstract]   [Full Text] [Related]  

  • 28. Field potentials from the frog optic tectum in vitro.
    Sivilotti L
    Brain Res Bull; 1986 Apr; 16(4):553-6. PubMed ID: 3487377
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [The reactions of pigeon tectum opticum neurons to visual stimuli].
    Gusel'nikov VI; Morenkov ED; Gutsu IP
    Neirofiziologiia; 1971; 3(1):99-105. PubMed ID: 5164182
    [No Abstract]   [Full Text] [Related]  

  • 30. The action of amino acids on evoked responses in the frog optic tectum [proceeding].
    Milson JA; Mitchell JF
    Br J Pharmacol; 1977 Mar; 59(3):484P. PubMed ID: 300262
    [No Abstract]   [Full Text] [Related]  

  • 31. Neural organization of the pathways from the superior colliculus to trochlear motoneurons.
    Izawa Y; Sugiuchi Y; Shinoda Y
    J Neurophysiol; 2007 May; 97(5):3696-712. PubMed ID: 17488977
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Electrophysiological study of the interaction between frog mesencephalic optic centers].
    Luk'ianov AS
    Fiziol Zh SSSR Im I M Sechenova; 1973 Feb; 59(2):348-50. PubMed ID: 4543560
    [No Abstract]   [Full Text] [Related]  

  • 33. An eye-tectum preparation allowing routine whole-cell recordings of neuronal responses to visual stimuli in frog.
    Svirskis G; Svirskiene N; Gutmaniene N
    J Neurosci Methods; 2009 May; 180(1):22-8. PubMed ID: 19427525
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Interaction of excitation and inhibition in the responses of superior colliculus neurons to moving visual stimuli].
    Mass AM
    Fiziol Zh SSSR Im I M Sechenova; 1974 Jan; 60(1):17-24. PubMed ID: 4848966
    [No Abstract]   [Full Text] [Related]  

  • 35. Intrinsic neuronal time delays can be compensated in cat visual cortex and frog tectum with regard to motion analysis.
    Koch HJ
    Acta Physiol Hung; 1997-1998; 85(4):303-13. PubMed ID: 10431601
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stability characteristics of positive feedback in a neural population.
    Freeman WJ
    IEEE Trans Biomed Eng; 1974 Sep; 21(5):358-64. PubMed ID: 4461665
    [No Abstract]   [Full Text] [Related]  

  • 37. Rise time and amplitude of visually elicited EPSPs of tectal neurons of the frog.
    Matsumoto N; Sadamori E; Sugihara T
    Acta Biol Hung; 1996; 47(1-4):303-12. PubMed ID: 9124001
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Neuroanatomical approaches of the tectum-reticular pathways and immunohistochemical evidence for serotonin-positive perikarya on neuronal substrates of the superior colliculus and periaqueductal gray matter involved in the elaboration of the defensive behavior and fear-induced analgesia.
    Coimbra NC; De Oliveira R; Freitas RL; Ribeiro SJ; Borelli KG; Pacagnella RC; Moreira JE; da Silva LA; Melo LL; Lunardi LO; Brandão ML
    Exp Neurol; 2006 Jan; 197(1):93-112. PubMed ID: 16303128
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Mechanisms of centrifugal regulation of the retinal sensitivity of Rana temporaria frog eyes].
    Shostak VI; Primakov VI
    Zh Evol Biokhim Fiziol; 1980; 16(5):532-5. PubMed ID: 6968491
    [No Abstract]   [Full Text] [Related]  

  • 40. Proceedings: The synaptic organization of the diencephalic input to the amphibian tectum.
    Chung SH; Kennard C
    J Physiol; 1975 Jun; 248(1):35P-36P. PubMed ID: 1080199
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.