These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 7326321)

  • 1. Fluorescence-determined preferential binding of quinacrine to DNA.
    Baldini G; Doglia S; Dolci S; Sassi G
    Biophys J; 1981 Dec; 36(3):465-77. PubMed ID: 7326321
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preferential binding of quinolones to DNA with alternating G, C / A, T sequences: a spectroscopic study.
    Jain A; Rajeswari MR
    J Biomol Struct Dyn; 2002 Oct; 20(2):291-9. PubMed ID: 12354080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential binding of the enantiomers of chloroquine and quinacrine to polynucleotides: implications for stereoselective metabolism.
    Scaria PV; Craig JC; Shafer RH
    Biopolymers; 1993 Jun; 33(6):887-95. PubMed ID: 8318663
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quinacrine, a chromosome stain specific for deoxyadenylate-deoxythymidylaterich regions in DNA.
    Weisblum B; De Haseth PL
    Proc Natl Acad Sci U S A; 1972 Mar; 69(3):629-32. PubMed ID: 4111050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the binding of YO to [poly(dA-dT)]2 and [poly(dG-dC)]2, and of the fluorescent properties of YO and YOYO complexed with the polynucleotides and double-stranded DNA.
    Larsson A; Carlsson C; Jonsson M
    Biopolymers; 1995 Aug; 36(2):153-67. PubMed ID: 7492743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Binding characteristics of Hoechst 33258 with calf thymus DNA, poly[d(A-T)], and d(CCGGAATTCCGG): multiple stoichiometries and determination of tight binding with a wide spectrum of site affinities.
    Loontiens FG; Regenfuss P; Zechel A; Dumortier L; Clegg RM
    Biochemistry; 1990 Sep; 29(38):9029-39. PubMed ID: 1702995
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tryptophan intercalation in G, C containing polynucleotides: Z to B conversion of poly [d(G-5M C)] in low salt induced by a tetra peptide.
    Rajeswari MR
    J Biomol Struct Dyn; 1996 Aug; 14(1):25-30. PubMed ID: 8877559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of quinacrine mustard with mononucleotides and polynucleotides.
    Selander RK
    Biochem J; 1973 Apr; 131(4):749-55. PubMed ID: 4578946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drug-DNA sequence-dependent interactions analysed by electric linear dichroism.
    Bailly C; Hénichart JP; Colson P; Houssier C
    J Mol Recognit; 1992 Dec; 5(4):155-71. PubMed ID: 1339484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optically detected triplet-state magnetic resonance studies of the DNA complexes of the bisquinoline analogue of echinomycin.
    Alfredson TV; Maki AH; Waring MJ
    Biochemistry; 1991 Oct; 30(40):9665-75. PubMed ID: 1911753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of 4,5-dibromo-2,7-di-(acetatomercuri)-fluorescein with DNAs of different base composition.
    Dattagupta N; Bünemann H; Müller W
    Biochim Biophys Acta; 1975 Jan; 378(1):44-53. PubMed ID: 164231
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA intercalation of methylene blue and quinacrine: new insights into base and sequence specificity from structural and thermodynamic studies with polynucleotides.
    Hossain M; Suresh Kumar G
    Mol Biosyst; 2009 Nov; 5(11):1311-22. PubMed ID: 19823747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of isoquinoline alkaloid palmatine with deoxyribonucleic acids: binding heterogeneity, and conformational and thermodynamic aspects.
    Bhadra K; Maiti M; Kumar GS
    Chem Biodivers; 2008 Apr; 5(4):575-90. PubMed ID: 18421749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of antimalarial drug quinacrine with nucleic acids of variable sequence studied by spectroscopic methods.
    Rivas L; Murza A; Sánchez-Cortés S; García-Ramos JV
    J Biomol Struct Dyn; 2000 Dec; 18(3):371-83. PubMed ID: 11149514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 23Na NMR relaxation study of the effects of conformation and base composition on the interactions of counterions with double-helical DNA.
    Nordenskiöld L; Chang DK; Anderson CF; Record MT
    Biochemistry; 1984 Sep; 23(19):4309-17. PubMed ID: 6091746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of chromosome banding. V. Quinacrine banding.
    Comings OE; Kovacs BW; Avelino E; Harris DC
    Chromosoma; 1975; 50(2):111-4. PubMed ID: 48455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intercalation of Zn(II) and Cu(II) complexes of the cyclic polyamine Neotrien into DNA: equilibria and kinetics.
    Biver T; Secco F; Tinè MR; Venturini M; Bencini A; Bianchi A; Giorgi C
    J Inorg Biochem; 2004 Sep; 98(9):1531-8. PubMed ID: 15337605
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microcalorimetric investigation of DNA, poly(dA)poly(dT) and poly[d(A-C)]poly[d(G-T)] melting in the presence of water soluble (meso tetra (4 N oxyethylpyridyl) porphyrin) and its Zn complex.
    Monaselidze J; Majagaladze G; Barbakadze Sh; Khachidze D; Gorgoshidze M; Kalandadze Y; Haroutiunian S; Dalyan Y; Vardanyan V
    J Biomol Struct Dyn; 2008 Feb; 25(4):419-24. PubMed ID: 18092836
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nucleotide sequence-dependent opening of double-stranded DNA at an electrically charged surface.
    Jelen F; Palecek E
    Gen Physiol Biophys; 1985 Apr; 4(2):219-37. PubMed ID: 4029596
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dependence of the Raman signature of genomic B-DNA on nucleotide base sequence.
    Deng H; Bloomfield VA; Benevides JM; Thomas GJ
    Biopolymers; 1999 Nov; 50(6):656-66. PubMed ID: 10508968
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.