These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 7326328)

  • 1. Relative contributions of the fraction of unfrozen water and of salt concentration to the survival of slowly frozen human erythrocytes.
    Mazur P; Rall WF; Rigopoulos N
    Biophys J; 1981 Dec; 36(3):653-75. PubMed ID: 7326328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contributions of unfrozen fraction and of salt concentration to the survival of slowly frozen human erythrocytes: influence of warming rate.
    Mazur P; Rigopoulos N
    Cryobiology; 1983 Jun; 20(3):274-89. PubMed ID: 6884070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Roles of unfrozen fraction, salt concentration, and changes in cell volume in the survival of frozen human erythrocytes.
    Mazur P; Cole KW
    Cryobiology; 1989 Feb; 26(1):1-29. PubMed ID: 2924590
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the mechanism of injury to slowly frozen erythrocytes.
    Pegg DE; Diaper MP
    Biophys J; 1988 Sep; 54(3):471-88. PubMed ID: 3207835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of cell concentration on the contribution of unfrozen fraction and salt concentration to the survival of slowly frozen human erythrocytes.
    Mazur P; Cole KW
    Cryobiology; 1985 Dec; 22(6):509-36. PubMed ID: 4075810
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relative influence of unfrozen fraction and salt concentration on the survival of slowly frozen eight-cell mouse embryos.
    Schneider U; Mazur P
    Cryobiology; 1987 Feb; 24(1):17-41. PubMed ID: 3816286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The temperature of intracellular ice formation in mouse oocytes vs. the unfrozen fraction at that temperature.
    Mazur P; Pinn IL; Kleinhans FW
    Cryobiology; 2007 Apr; 54(2):223-33. PubMed ID: 17379206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of salt concentration and unfrozen water fraction on the viability of slowly frozen ram spermatozoa.
    Watson PF; Duncan AE
    Cryobiology; 1988 Apr; 25(2):131-42. PubMed ID: 3371058
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Factors contributing to inactivation of isolated thylakoid membranes during freezing in the presence of variable amounts of glucose and NaCl.
    Santarius KA; Giersch C
    Biophys J; 1984 Aug; 46(2):129-39. PubMed ID: 6478028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of "solution effects" injury. Equations for calculating phase diagram information for the ternary systems NaCl-dimethylsulfoxide-water and NaCl-glycerol-water.
    Fahy GM
    Biophys J; 1980 Nov; 32(2):837-50. PubMed ID: 7260303
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physical-chemical basis of the protection of slowly frozen human erythrocytes by glycerol.
    Rall WF; Mazur P; Souzu H
    Biophys J; 1978 Jul; 23(1):101-20. PubMed ID: 667300
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of initial tonicity on freeze/thaw injury to human red cells suspended in solutions of sodium chloride.
    Pegg DE; Diaper MP
    Cryobiology; 1991 Feb; 28(1):18-35. PubMed ID: 2015759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The "unfrozen fraction" hypothesis of freezing injury to human erythrocytes: a critical examination of the evidence.
    Pegg DE; Diaper MP
    Cryobiology; 1989 Feb; 26(1):30-43. PubMed ID: 2924591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationship between intracellular ice formation in oocytes of the mouse and Xenopus and the physical state of the external medium--a revisit.
    Mazur P; Kleinhans FW
    Cryobiology; 2008 Feb; 56(1):22-7. PubMed ID: 18045584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extra- and intracellular ice formation in mouse oocytes.
    Mazur P; Seki S; Pinn IL; Kleinhans FW; Edashige K
    Cryobiology; 2005 Aug; 51(1):29-53. PubMed ID: 15975568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of freezing damage.
    Pegg DE
    Symp Soc Exp Biol; 1987; 41():363-78. PubMed ID: 3332492
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The high viscosity encountered during freezing in glycerol solutions: effects on cryopreservation.
    Morris GJ; Goodrich M; Acton E; Fonseca F
    Cryobiology; 2006 Jun; 52(3):323-34. PubMed ID: 16499898
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of X-ray tomography to map crystalline and amorphous phases in frozen biomaterials.
    Bischof JC; Mahr B; Choi JH; Behling M; Mewes D
    Ann Biomed Eng; 2007 Feb; 35(2):292-304. PubMed ID: 17136446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calorimetric studies of freeze-induced dehydration of phospholipids.
    Bronshteyn VL; Steponkus PL
    Biophys J; 1993 Nov; 65(5):1853-65. PubMed ID: 8298015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fracture phenomena in an isotonic salt solution during freezing and their elimination using glycerol.
    Gao DY; Lin S; Watson PF; Critser JK
    Cryobiology; 1995 Jun; 32(3):270-84. PubMed ID: 7781329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.