These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 7326380)
1. Copley-Scott Blair phenomenon and electric double layer. Oka S Biorheology; 1981; 18(3-6):347-53. PubMed ID: 7326380 [No Abstract] [Full Text] [Related]
2. The Copley-Scott Blair phenomenon. Will it be explained by the effect of an electric double layer? Sigal VL Biorheology; 1984; 21(3):297-302. PubMed ID: 6466801 [TBL] [Abstract][Full Text] [Related]
3. Copley-Scott Blair phenomenon and electric double layer. Oka S Biorheology; 1984; 21(3):417. PubMed ID: 6466811 [No Abstract] [Full Text] [Related]
4. Biorheological aspect in relation to endoendothelial fibrin lining. Oka S Thromb Res; 1983; Suppl 5():61-5. PubMed ID: 6612673 [TBL] [Abstract][Full Text] [Related]
5. Hemorheological aspects of the endothelium-plasma interface. Copley AL Microvasc Res; 1974 Sep; 8(2):192-212. PubMed ID: 4612301 [No Abstract] [Full Text] [Related]
6. Physical theory of some interface phenomena in hemorheology. Oka S Ann N Y Acad Sci; 1983; 416():115-27. PubMed ID: 6587804 [TBL] [Abstract][Full Text] [Related]
7. Electrokinetic effects on luminal and transmural fluid flow in capillaries. Winlove CP; Parker KH Biorheology; 1987; 24(6):783-93. PubMed ID: 3502772 [TBL] [Abstract][Full Text] [Related]
8. The endo-endothelial fibrin lining. A historical account. Copley AL Thromb Res; 1983; Suppl 5():1-26. PubMed ID: 6351335 [No Abstract] [Full Text] [Related]
10. The physiological significance of the endoendothelial fibrin lining (EEFL) as the critical interface in the 'vessel-blood organ' and the importance of in vivo 'fibrinogenin formation' in health and disease. Copley AL Thromb Res Suppl; 1983; 5():105-45. PubMed ID: 6579714 [TBL] [Abstract][Full Text] [Related]
11. The physiological significance of the endoendothelial fibrin lining (EEFL) as the critical interface in the "vessel-blood organ' and the importance of in vivo "fibrinogenin formation' in health and disease. Copley AL Thromb Res; 1983; Suppl 5():105-45. PubMed ID: 6225215 [No Abstract] [Full Text] [Related]
12. [Macro- and micro-rheology of blood circulation]. Niimi H Iyodenshi To Seitai Kogaku; 1983 Aug; 21(4):225-32. PubMed ID: 6366292 [No Abstract] [Full Text] [Related]
13. A low Reynolds number entry flow theory and its application to the motion of the plasma in bolus flow. Lew HS; Miller J J Biomech; 1974 Mar; 7(2):113-21. PubMed ID: 4837545 [No Abstract] [Full Text] [Related]
15. The endoendothelial fibrin lining, fibrinogen gel clotting, and the endothelium-blood interface. Copley AL Ann N Y Acad Sci; 1983; 416():377-96. PubMed ID: 6203458 [No Abstract] [Full Text] [Related]
16. [Hemorheology and microcirculation]. Pretolani E G Clin Med; 1988 Oct; 69(10):601-4. PubMed ID: 3229610 [No Abstract] [Full Text] [Related]
17. The Microcirculatory Society Eugene M. Landis Award lecture. Role of blood cells in microcirculatory regulation. Chien S Microvasc Res; 1985 Mar; 29(2):129-51. PubMed ID: 3887106 [No Abstract] [Full Text] [Related]
18. Qualification of the dynamics of red cell aggregation. Schmid-Schönbein H; Wells R Bibl Anat; 1969; 10():45-51. PubMed ID: 5407401 [No Abstract] [Full Text] [Related]
19. Blood flow in capillary tubes: curvature and gravity effects. Hung TC; Hung TK; Bugliarello G Biorheology; 1980; 17(4):331-42. PubMed ID: 7260345 [No Abstract] [Full Text] [Related]
20. [Biorheology and medicine: a group discussion]. Saito S; Oka K; Fukada E; Azuma T; Hayase S Nihon Rinsho; 1972 Apr; 30(4):985-1002. PubMed ID: 4672778 [No Abstract] [Full Text] [Related] [Next] [New Search]