These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 7326393)

  • 21. Effect of erythrocyte surface potential on time dependent thixotropy of human blood [proceedings].
    Shoja HS; Taylor DE
    J Physiol; 1980 Jan; 298():52P-53P. PubMed ID: 7359437
    [No Abstract]   [Full Text] [Related]  

  • 22. Spin label study of erythrocyte membrane submitted to a bending stress.
    Bitbol M; Leterrier F
    Biorheology; 1982; 19(4):495-506. PubMed ID: 6289929
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Viscoelasticity of the human erythrocyte membrane.
    Williams AR
    Biorheology; 1973 Sep; 10(3):313-9. PubMed ID: 4772004
    [No Abstract]   [Full Text] [Related]  

  • 24. Mechanical properties of the human red blood cell membrane at -15 degrees C.
    Thom F
    Cryobiology; 2009 Aug; 59(1):24-7. PubMed ID: 19362084
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Intrinsic factors that influence measurement of erythrocyte deformability.
    Stuart J
    Klin Wochenschr; 1986 Oct; 64(20):1088-91. PubMed ID: 3784461
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanics and thermodynamics of biomembranes: part 2.
    Evans EA; Skalak R
    CRC Crit Rev Bioeng; 1979 Nov; 3(4):331-418. PubMed ID: 391486
    [No Abstract]   [Full Text] [Related]  

  • 27. Effects of shear rate and suspending medium viscosity on elongation of red cells tank-treading in shear flow.
    Fischer TM; Korzeniewski R
    Cytometry A; 2011 Nov; 79(11):946-51. PubMed ID: 22015732
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The influence of erythrocyte shape on suspension viscosities.
    Reinhart WH; Singh-Marchetti M; Straub PW
    Eur J Clin Invest; 1992 Jan; 22(1):38-44. PubMed ID: 1559541
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Determination of red blood cell membrane viscosity from rheoscopic observations of tank-treading motion.
    Tran-Son-Tay R; Sutera SP; Rao PR
    Biophys J; 1984 Jul; 46(1):65-72. PubMed ID: 6743758
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [An index of erythrocyte rigidity deduced from viscosimetry].
    Quemada D
    C R Acad Hebd Seances Acad Sci D; 1976 Oct; 283(8):991-4. PubMed ID: 826338
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Complex viscosity of bovine red blood cells in suspensions.
    Sakanishi A; Ferry JD
    Biorheology; 1983; 20(5):519-29. PubMed ID: 6203571
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A mathematical model of the flow of blood cells in fine capillaries.
    Ducharme R; Kapadia P; Dowden J
    J Biomech; 1991; 24(5):299-306. PubMed ID: 2050706
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Contribution of erythrocytes to turbulent blood flow.
    Stein PD; Sabbah HN; Blick EF
    Biorheology; 1975 Aug; 12(5):293-9. PubMed ID: 1203532
    [No Abstract]   [Full Text] [Related]  

  • 34. A rheological model for studying the hematocrit dependence of red cell-red cell and red cell-protein interactions in blood.
    Quemada D
    Biorheology; 1981; 18(3-6):501-16. PubMed ID: 7326391
    [No Abstract]   [Full Text] [Related]  

  • 35. Erythrocyte deformability in multiple sclerosis.
    Pollock S; Harrison MJ; O'Connell G
    J Neurol Neurosurg Psychiatry; 1982 Aug; 45(8):762. PubMed ID: 7131008
    [No Abstract]   [Full Text] [Related]  

  • 36. Microrheology and light transmission of blood. II. The photometric quantification of red cell aggregate formation and dispersion in flow.
    Schmid-Schönbein H; Volger E; Klose HJ
    Pflugers Arch; 1972; 333(2):140-55. PubMed ID: 5065509
    [No Abstract]   [Full Text] [Related]  

  • 37. [Biophysical approach to cell interaction: role of rheologic parameters].
    Stolz JF
    Nouv Rev Fr Hematol (1978); 1986; 28(1):36-43. PubMed ID: 3520480
    [No Abstract]   [Full Text] [Related]  

  • 38. Microrheology and light transmission of blood. I. The photometric effects of red cell aggregation and red cell orientation.
    Klose HJ; Volger E; Brechtelsbauer H; Heinich L; Schmid-Schönbein H
    Pflugers Arch; 1972; 333(2):126-39. PubMed ID: 4538028
    [No Abstract]   [Full Text] [Related]  

  • 39. Turbulent blood flow and the effects of erythrocytes.
    Munter WA; Stein PD
    Cardiovasc Res; 1974 May; 8(3):338-46. PubMed ID: 4416756
    [No Abstract]   [Full Text] [Related]  

  • 40. [Erythrocyte rheology and red cell fragmentation].
    Omine M; Maekawa T
    Nihon Rinsho; 1979 Dec; 37(12):3969-77. PubMed ID: 395340
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.