These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

52 related articles for article (PubMed ID: 7326991)

  • 1. An electron microscopic study on tetrasporogenesis of the parasitic red alga Erythrocystis Montagnei (Derb. and Sol.) Silva.
    Santisi S; De Masi F
    Cytobios; 1981; 31(123-124):163-78. PubMed ID: 7326991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The fine structure of the vegetative cells of Erythrocystis montagnei, a symbiotic red alga.
    Melchionna M; De Masi F
    Cytobios; 1978; 20(78):113-9. PubMed ID: 743891
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fine structural study of the red seaweed Gymnogongrus torulosus (Phyllophoraceae, Rhodophyta).
    Estevez JM; Cáceres EJ
    Biocell; 2003 Aug; 27(2):181-7. PubMed ID: 14510236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The phylogenetic position of red algae revealed by multiple nuclear genes from mitochondria-containing eukaryotes and an alternative hypothesis on the origin of plastids.
    Nozaki H; Matsuzaki M; Takahara M; Misumi O; Kuroiwa H; Hasegawa M; Shin-i T; Kohara Y; Ogasawara N; Kuroiwa T
    J Mol Evol; 2003 Apr; 56(4):485-97. PubMed ID: 12664168
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple gene phylogenies support the monophyly of cryptomonad and haptophyte host lineages.
    Patron NJ; Inagaki Y; Keeling PJ
    Curr Biol; 2007 May; 17(10):887-91. PubMed ID: 17462896
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel iron-storage particles may play a role in aluminum tolerance of Cyanidium caldarium.
    Nagasaka S; Nishizawa NK; Negishi T; Satake K; Mori S; Yoshimura E
    Planta; 2002 Jul; 215(3):399-404. PubMed ID: 12111221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Do vesicle cells of the red alga Asparagopsis (Falkenbergia stage) play a role in bromocarbon production?
    Marshall RA; Hamilton JT; Dring MJ; Harper DB
    Chemosphere; 2003 Jul; 52(2):471-5. PubMed ID: 12738272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stabilization of cytomembranes in red algae during ultrastructural fixation with calcium chloride.
    Lin HP; Sommerfeld MR
    Trans Am Microsc Soc; 1978 Jan; 97(1):94-100. PubMed ID: 343347
    [No Abstract]   [Full Text] [Related]  

  • 9. Biosynthesis of di-(2-ethylhexyl) phthalate (DEHP) and di-n-butyl phthalate (DBP) from red alga--Bangia atropurpurea.
    Chen CY
    Water Res; 2004 Feb; 38(4):1014-8. PubMed ID: 14769421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A signal released by an endophytic attacker acts as a substrate for a rapid defensive reaction of the red alga Chondrus crispus.
    Weinberger F; Pohnert G; Kloareg B; Potin P
    Chembiochem; 2002 Dec; 3(12):1260-3. PubMed ID: 12465036
    [No Abstract]   [Full Text] [Related]  

  • 11. The origin of red algae and cryptomonad nucleomorphs: A comparative phylogeny based on small and large subunit rRNA sequences of Palmaria palmata, Gracilaria verrucosa, and the Guillardia theta nucleomorph.
    Van der Auwera G; Hofmann CJ; De Rijk P; De Wachter R
    Mol Phylogenet Evol; 1998 Dec; 10(3):333-42. PubMed ID: 10051386
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biliproteins and phycobilisomes from cyanobacteria and red algae at the extremes of habitat.
    Samsonoff WA; MacColl R
    Arch Microbiol; 2001 Dec; 176(6):400-5. PubMed ID: 11734882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Red algae and their use in papermaking.
    Seo YB; Lee YW; Lee CH; You HC
    Bioresour Technol; 2010 Apr; 101(7):2549-53. PubMed ID: 20022488
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aphidicolin uncouples the chloroplast division cycle from the mitotic cycle in the unicellular red alga Cyanidioschyzon merolae.
    Itoh R; Takahashi H; Toda K; Kuroiwa H; Kuroiwa T
    Eur J Cell Biol; 1996 Nov; 71(3):303-10. PubMed ID: 8929569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Purification and characterization of organellar DNA polymerases in the red alga Cyanidioschyzon merolae.
    Moriyama T; Terasawa K; Fujiwara M; Sato N
    FEBS J; 2008 Jun; 275(11):2899-918. PubMed ID: 18430024
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chromalveolates and the evolution of plastids by secondary endosymbiosis.
    Keeling PJ
    J Eukaryot Microbiol; 2009; 56(1):1-8. PubMed ID: 19335769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolated chloroplast division machinery can actively constrict after stretching.
    Yoshida Y; Kuroiwa H; Misumi O; Nishida K; Yagisawa F; Fujiwara T; Nanamiya H; Kawamura F; Kuroiwa T
    Science; 2006 Sep; 313(5792):1435-8. PubMed ID: 16960006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. State transitions or delta pH-dependent quenching of photosystem II fluorescence in red algae.
    Delphin E; Duval JC; Etienne AL; Kirilovsky D
    Biochemistry; 1996 Jul; 35(29):9435-45. PubMed ID: 8755722
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of photosynthesis in the unicellular acidophilic red alga Galdieria sulphuraria.
    Oesterhelt C; Schmälzlin E; Schmitt JM; Lokstein H
    Plant J; 2007 Aug; 51(3):500-11. PubMed ID: 17587234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of element accumulation in cell wall attached and intracellular particles of snow algae by EELS and ESI.
    Lütz-Meindl U; Lütz C
    Micron; 2006; 37(5):452-8. PubMed ID: 16376553
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.