BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 732879)

  • 1. Assembly of stratum corneum basic protein and keratin filaments in macrofibrils.
    Dale BA; Holbrook KA; Steinert PM
    Nature; 1978 Dec; 276(5689):729-31. PubMed ID: 732879
    [No Abstract]   [Full Text] [Related]  

  • 2. Stratum corneum basic protein: an interfilamentous matrix protein of epidermal keratin.
    Dale BA; Lonsdale-Eccles JD; Holbrook KA
    Curr Probl Dermatol; 1980; 10():311-25. PubMed ID: 6165525
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of beta-keratins in lizard epidermis: electrophoresis, immunocytochemical and in situ-hybridization study.
    Toni M; Alibardi L
    Tissue Cell; 2007 Feb; 39(1):1-11. PubMed ID: 17101163
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biochemical evidence for keratinization by mouse epidermal cells in culture.
    Steinert P; Yuspa SH
    Science; 1978 Jun; 200(4349):1491-3. PubMed ID: 566466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of a class of cationic proteins that specifically interact with intermediate filaments.
    Steinert PM; Cantieri JS; Teller DC; Lonsdale-Eccles JD; Dale BA
    Proc Natl Acad Sci U S A; 1981 Jul; 78(7):4097-101. PubMed ID: 6170061
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Similarities between stratum corneum basic protein and histidine-rich protein II from newborn rat epidermis.
    Dale BA; Vadlamudi B; DeLap LW; Bernstein IA
    Biochim Biophys Acta; 1981 Mar; 668(1):98-106. PubMed ID: 6165394
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein oxidation in human stratum corneum: susceptibility of keratins to oxidation in vitro and presence of a keratin oxidation gradient in vivo.
    Thiele JJ; Hsieh SN; Briviba K; Sies H
    J Invest Dermatol; 1999 Sep; 113(3):335-9. PubMed ID: 10469330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binding of primaquine to epidermal membranes and keratin.
    Heard CM; Monk BV; Modley AJ
    Int J Pharm; 2003 May; 257(1-2):237-44. PubMed ID: 12711178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Keratin filaments of cultured human epidermal cells. Formation of intermolecular disulfide bonds during terminal differentiation.
    Sun TT; Green H
    J Biol Chem; 1978 Mar; 253(6):2053-60. PubMed ID: 416022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Avian scale development: XI. Immunoelectron microscopic localization of alpha and beta keratins in the scutate scale.
    Carver WE; Sawyer RH
    J Morphol; 1988 Jan; 195(1):31-43. PubMed ID: 2448486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of keratin subfamilies and keratin pairs in the formation of human epidermal intermediate filaments.
    Eichner R; Sun TT; Aebi U
    J Cell Biol; 1986 May; 102(5):1767-77. PubMed ID: 2422179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conservation of the structure of keratin intermediate filaments: molecular mechanism by which different keratin molecules integrate into preexisting keratin intermediate filaments during differentiation.
    Steinert PM; Marekov LN; Parry DA
    Biochemistry; 1993 Sep; 32(38):10046-56. PubMed ID: 7691168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Keratin-water-NMF interaction as a three layer model in the human stratum corneum using in vivo confocal Raman microscopy.
    Choe C; Schleusener J; Lademann J; Darvin ME
    Sci Rep; 2017 Nov; 7(1):15900. PubMed ID: 29162917
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The characterization of human epidermal filaggrin. A histidine-rich, keratin filament-aggregating protein.
    Lynley AM; Dale BA
    Biochim Biophys Acta; 1983 Apr; 744(1):28-35. PubMed ID: 6187370
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distribution of keratin and associated proteins in the epidermis of monotreme, marsupial, and placental mammals.
    Alibardi L; Maderson PF
    J Morphol; 2003 Oct; 258(1):49-66. PubMed ID: 12905534
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression of unusually large keratins during terminal differentiation: balance of type I and type II keratins is not disrupted.
    Kim KH; Marchuk D; Fuchs E
    J Cell Biol; 1984 Nov; 99(5):1872-7. PubMed ID: 6208205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural and immunocytochemical characterization of keratinization in vertebrate epidermis and epidermal derivatives.
    Alibardi L
    Int Rev Cytol; 2006; 253():177-259. PubMed ID: 17098057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Keratin alterations during embryonic epidermal differentiation: a presage of adult epidermal maturation.
    Banks-Schlegel SP
    J Cell Biol; 1982 Jun; 93(3):551-9. PubMed ID: 6181071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of beta-keratins and associated proteins in adult and regenerating epidermis of lizards.
    Alibardi L; Spisni E; Frassanito AG; Toni M
    Tissue Cell; 2004 Oct; 36(5):333-49. PubMed ID: 15385150
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intermediate filaments in alpha-keratins.
    Fraser RD; MacRae TP; Parry DA; Suzuki E
    Proc Natl Acad Sci U S A; 1986 Mar; 83(5):1179-83. PubMed ID: 2419903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.