BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

406 related articles for article (PubMed ID: 7329968)

  • 1. Structural and ultrastructural peritoneal membrane changes and permeability alterations during continuous ambulatory peritoneal dialysis.
    Verger C; Brunschvicg O; Le Charpentier Y; Lavergne A; Vantelon J
    Proc Eur Dial Transplant Assoc; 1981; 18():199-205. PubMed ID: 7329968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Peritoneal rest may successfully recover ultrafiltration in patients who develop peritoneal hyperpermeability with time on continuous ambulatory peritoneal dialysis.
    Rodrigues A; Cabrita A; Maia P; Guimarães S
    Adv Perit Dial; 2002; 18():78-80. PubMed ID: 12402593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Longitudinal changes of peritoneal function calculated by personal dialysis capacity in a patient after long-term continuous ambulatory peritoneal dialysis.
    Nakamoto H; Takane H; Sugahara S; Kanno Y; Okada H; Yamamoto T; Suzuki H
    Adv Perit Dial; 2003; 19():97-102. PubMed ID: 14763042
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modification of peritoneal ultrafiltration capacity in children undergoing peritoneal dialysis.
    Drachman R; Niaudet P; Gagnadoux MF; Broyer M
    Int J Pediatr Nephrol; 1985; 6(1):35-40. PubMed ID: 3997371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in peritoneal membrane after continuous ambulatory peritoneal dialysis--a histopathological study.
    Bertoli SV; Barone MT; Vago L; Bonetto S; De Vecchi A; Scalamogna A; Barbiano di Belgiojoso G
    Adv Perit Dial; 1999; 15():28-31. PubMed ID: 10682067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mesenchymal conversion of mesothelial cells as a mechanism responsible for high solute transport rate in peritoneal dialysis: role of vascular endothelial growth factor.
    Aroeira LS; Aguilera A; Selgas R; Ramírez-Huesca M; Pérez-Lozano ML; Cirugeda A; Bajo MA; del Peso G; Sánchez-Tomero JA; Jiménez-Heffernan JA; López-Cabrera M
    Am J Kidney Dis; 2005 Nov; 46(5):938-48. PubMed ID: 16253736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulations of osmotic ultrafiltration failure in CAPD using a serial three-pore membrane/fiber matrix model.
    Rippe B; Venturoli D
    Am J Physiol Renal Physiol; 2007 Mar; 292(3):F1035-43. PubMed ID: 17090782
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3,4-Dideoxyglucosone-3-ene as a mediator of peritoneal demesothelization.
    Santamaría B; Ucero AC; Reyero A; Selgas R; Ruiz-Ortega M; Catalán M; Egido J; Ortiz A
    Nephrol Dial Transplant; 2008 Oct; 23(10):3307-15. PubMed ID: 18524790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Peritoneum as a dialysis membrane. II. Pathology].
    Grzybowski A; Breborowicz A
    Przegl Lek; 1997; 54(1):52-61. PubMed ID: 9190636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Is the peritoneal membrane durable indefinitely?
    Hallett MD; Charlton B; Farrell PC
    Adv Perit Dial; 1990; 6():197-201. PubMed ID: 1982808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Morpho-functional study of peritoneum in peritoneal dialysis patients.
    Bertoli SV; Buzzi L; Ciurlino D; Maccario M; Martino S
    J Nephrol; 2003; 16(3):373-8. PubMed ID: 12832736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differences in fluid and solute transport between diabetic and nondiabetic patients at the onset of CAPD.
    Serlie MJ; Struijk DG; de Blok K; Krediet RT
    Adv Perit Dial; 1997; 13():29-32. PubMed ID: 9360646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peritoneal resting is beneficial in peritoneal hyperpermeability and ultrafiltration failure.
    de Alvaro F; Castro MJ; Dapena F; Bajo MA; Fernandez-Reyes MJ; Romero JR; Jimenez C; Miranda B; Selgas R
    Adv Perit Dial; 1993; 9():56-61. PubMed ID: 8105963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Peritoneum as dialysis membrane--a morphologic study].
    Korten G
    Z Urol Nephrol; 1984 Dec; 77(12):721-7. PubMed ID: 6528754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. What is new in peritoneal dialysis in the years 2003-2004.
    Grzegorzewska AE
    Rocz Akad Med Bialymst; 2004; 49():170-3. PubMed ID: 15631336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of intraperitoneal cyclooxygenase inhibition on inflammatory mediators in dialysate and peritoneal membrane characteristics during peritonitis in continuous ambulatory peritoneal dialysis.
    Zemel D; Struijk DG; Dinkla C; Stolk LM; ten Berge IJ; Krediet RT
    J Lab Clin Med; 1995 Aug; 126(2):204-15. PubMed ID: 7636393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression of heat shock proteins 47 and 70 in the peritoneum of patients on continuous ambulatory peritoneal dialysis.
    Shioshita K; Miyazaki M; Ozono Y; Abe K; Taura K; Harada T; Koji T; Taguchi T; Kohno S
    Kidney Int; 2000 Feb; 57(2):619-31. PubMed ID: 10652040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Categorization of ultrastructural changes in peritoneal mesothelium, stroma and blood vessels in uremia and CAPD patients.
    Dobbie JW; Lloyd JK; Gall CA
    Adv Perit Dial; 1990; 6():3-12. PubMed ID: 1982832
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of calcium antagonists on the peritoneal membrane in patients on CAPD.
    Vargemezis V; Pasadakis P; Thodis E
    Adv Perit Dial; 1989; 5():8-11. PubMed ID: 2577433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Involvement of TGF-beta signal for peritoneal sclerosing in continuous ambulatory peritoneal dialysis.
    Naiki Y; Maeda Y; Matsuo K; Yonekawa S; Sakaguchi M; Iwamoto I; Hasegawa H; Kanamaru A
    J Nephrol; 2003; 16(1):95-102. PubMed ID: 12649540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.