These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 7330579)

  • 1. X-ray evaluation of SEM technique for determining the crystallography of echinoid skeletons.
    Dillaman RM; Hart HV
    Scan Electron Microsc; 1981; (Pt 3):313-20. PubMed ID: 7330579
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of calcite co-orientation in the sea urchin tooth.
    Killian CE; Metzler RA; Gong YU; Olson IC; Aizenberg J; Politi Y; Wilt FH; Scholl A; Young A; Doran A; Kunz M; Tamura N; Coppersmith SN; Gilbert PU
    J Am Chem Soc; 2009 Dec; 131(51):18404-9. PubMed ID: 19954232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal orientation and plate structure in echinoid skeletal units.
    Nissen HU
    Science; 1969 Nov; 166(3909):1150-2. PubMed ID: 17775575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal orientation mapping of NiO grown on cube textured Ni tapes.
    Woodcock TG; Abell JS; Eickemeyer J; Holzapfel B
    J Microsc; 2004 Nov; 216(Pt 2):123-30. PubMed ID: 15516223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microstructure and crystallographic-texture of giant barnacle (Austromegabalanus psittacus) shell.
    Rodríguez-Navarro AB; CabraldeMelo C; Batista N; Morimoto N; Alvarez-Lloret P; Ortega-Huertas M; Fuenzalida VM; Arias JI; Wiff JP; Arias JL
    J Struct Biol; 2006 Nov; 156(2):355-62. PubMed ID: 16962792
    [TBL] [Abstract][Full Text] [Related]  

  • 6. X-ray Diffraction Studies of Echinoderm Plates.
    Donnay G; Pawson DL
    Science; 1969 Nov; 166(3909):1147-50. PubMed ID: 17775574
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elucidation of crystal packing by X-ray diffraction and freeze-etching electron microscopy. Studies on GTP cyclohydrolase I of Escherichia coli.
    Meining W; Bacher A; Bachmann L; Schmid C; Weinkauf S; Huber R; Nar H
    J Mol Biol; 1995 Oct; 253(1):208-18. PubMed ID: 7473713
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of the anisotropic dimensional change of the wax pattern prepared by the softened wax technique. (1) Relationship between recovery and crystal orientation.
    Watanabe K
    Shika Rikogaku Zasshi; 1981 Jan; 22(57):63-96. PubMed ID: 7021714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nucleation and growth of aragonite crystals at the growth front of nacres in pearl oyster, Pinctada fucata.
    Saruwatari K; Matsui T; Mukai H; Nagasawa H; Kogure T
    Biomaterials; 2009 Jun; 30(16):3028-34. PubMed ID: 19328543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sea urchin spine calcite forms via a transient amorphous calcium carbonate phase.
    Politi Y; Arad T; Klein E; Weiner S; Addadi L
    Science; 2004 Nov; 306(5699):1161-4. PubMed ID: 15539597
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystallographic structure of the foliated calcite of bivalves.
    Checa AG; Esteban-Delgado FJ; Rodríguez-Navarro AB
    J Struct Biol; 2007 Feb; 157(2):393-402. PubMed ID: 17097305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Organic matrixlike macromolecules associated with the mineral phase of sea urchin skeletal plates and teeth.
    Weiner S
    J Exp Zool; 1985 Apr; 234(1):7-15. PubMed ID: 3989499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure and surface properties of an investigational drug--a case study.
    Kiang YH; Shi HG; Mathre DJ; Xu W; Zhang D; Panmai S
    Int J Pharm; 2004 Aug; 280(1-2):17-26. PubMed ID: 15265543
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystallographic reorganization of the calcitic prismatic layer of oysters.
    Checa AG; Esteban-Delgado FJ; Ramírez-Rico J; Rodríguez-Navarro AB
    J Struct Biol; 2009 Sep; 167(3):261-70. PubMed ID: 19540344
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystalline arrangement and nanostructure of aragonitic crossed lamellar layers of the Meretrix lusoria shell.
    Hayashi A; Watanabe T; Nakamura T
    Zoology (Jena); 2010 Mar; 113(2):125-30. PubMed ID: 20346639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of three-dimensional orientations of ferroelectric single crystals by an improved rotating orientation x-ray diffraction method.
    Li F; Jin L; Xu Z; Guo Z
    Rev Sci Instrum; 2009 Aug; 80(8):085106. PubMed ID: 19725680
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystallographic relationships in the crossed lamellar microstructure of the shell of the gastropod Conus marmoreus.
    Rodriguez-Navarro AB; Checa A; Willinger MG; Bolmaro R; Bonarski J
    Acta Biomater; 2012 Feb; 8(2):830-5. PubMed ID: 22094820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystallographic characterization of the crossed lamellar structure in the bivalve Meretrix lamarckii using electron beam techniques.
    Hayashi A; Yokoo N; Nakamura T; Watanabe T; Nagasawa H; Kogure T
    J Struct Biol; 2011 Oct; 176(1):91-6. PubMed ID: 21763427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Orientation of non-crystallographic symmetry axes in protein crystals.
    Wang X; Janin J
    Acta Crystallogr D Biol Crystallogr; 1993 Nov; 49(Pt 6):505-12. PubMed ID: 15299486
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of the three-dimensional structure of dislocations in silicon by synchrotron white X-ray topography combined with a topo-tomographic technique.
    Kawado S; Taishi T; Iida S; Suzuki Y; Chikaura Y; Kajiwara K
    J Synchrotron Radiat; 2004 Jul; 11(Pt 4):304-8. PubMed ID: 15211035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.