These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 7332540)

  • 41. Uptake of meta-iodobenzylguanidine by bovine chromaffin granule membranes.
    Gasnier B; Roisin MP; Scherman D; Coornaert S; Desplanches G; Henry JP
    Mol Pharmacol; 1986 Mar; 29(3):275-80. PubMed ID: 3951433
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effects of nicardipine and other Ca2+-antagonists on catecholamine transport into chromaffin granule membrane vesicles.
    Tachikawa E; Takahashi S; Shimizu C; Ohtsubo N; Kashimoto T; Takahashi E
    Res Commun Chem Pathol Pharmacol; 1984 Aug; 45(2):305-8. PubMed ID: 6484315
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Uptake of Ca2+ by isolated secretory vesicles from adrenal medulla.
    Krieger-Brauer H; Gratzl M
    Biochim Biophys Acta; 1982 Sep; 691(1):61-70. PubMed ID: 6814486
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Electron probe microanalysis of the subcellular compartments of bovine adrenal chromaffin cells. Comparison of chromaffin granules in situ and in vitro.
    Ornberg RL; Kuijpers GA; Leapman RD
    J Biol Chem; 1988 Jan; 263(3):1488-93. PubMed ID: 3335554
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Presence of Na+/Ca2+ exchange activity and its role in regulation of intracellular calcium concentration in bovine adrenal chromaffin cells.
    Chern YJ; Chueh SH; Lin YJ; Ho CM; Kao LS
    Cell Calcium; 1992 Feb; 13(2):99-106. PubMed ID: 1633612
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Characterization of ATP transport into chromaffin granule ghosts. Synergy of ATP and serotonin accumulation in chromaffin granule ghosts.
    Bankston LA; Guidotti G
    J Biol Chem; 1996 Jul; 271(29):17132-8. PubMed ID: 8663306
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Regulatory mechanism of calcium efflux from cultured bovine adrenal chromaffin cells induced by extracellular ATP.
    Houchi H; Okuno M; Yoshizumi M; Oka M
    Neurosci Lett; 1995 Oct; 198(3):177-80. PubMed ID: 8552315
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mechanisms of Ca2+ transport in plasma membrane vesicles prepared from cultured pituitary cells. I. Characterization of Na+/Ca2+ exchange activity.
    Kaczorowski GJ; Costello L; Dethmers J; Trumble MJ; Vandlen RL
    J Biol Chem; 1984 Aug; 259(15):9395-403. PubMed ID: 6430901
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A potassium ion diffusion potential causes adrenaline uptake in chromaffin-granule 'ghosts'.
    Njus D; Radda GK
    Biochem J; 1979 Jun; 180(3):579-85. PubMed ID: 486135
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Na+/Ca2+ exchange, Ca2+ binding, and electrogenic Ca2+ transport in plasma membranes of human placental syncytiotrophoblast.
    Kamath SG; Smith CH
    Pediatr Res; 1994 Oct; 36(4):461-7. PubMed ID: 7816521
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Comparative studies on Ca2+- and Mg2+-binding of sarcoplasmic reticulum and chromaffin granule membranes.
    Balzer H; Khan AR; Ristić-Radivojević S
    Biochem Pharmacol; 1984 Jan; 33(1):21-9. PubMed ID: 6704140
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Serotonin increases Na(+)-dependent Ca2+ efflux from bovine adrenal chromaffin cells in culture.
    Minakuchi K; Houchi H; Yoshizumi M; Ishimura Y; Morita K; Takasugi M; Oka M; Tamaki T
    Neurosci Lett; 1997 Feb; 223(1):17-20. PubMed ID: 9058412
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Lysophosphatidic acid as a stimulator of Na(+)-dependent Ca2+ efflux from adrenal chromaffin cells.
    Houchi H; Okuno M; Tokumura A; Yoshizumi M; Fukuzawa K; Oka M
    Life Sci; 1995; 57(15):PL205-10. PubMed ID: 7674825
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Dominant role of mitochondria in clearance of large Ca2+ loads from rat adrenal chromaffin cells.
    Herrington J; Park YB; Babcock DF; Hille B
    Neuron; 1996 Jan; 16(1):219-28. PubMed ID: 8562086
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Multiple effects of reserpine on chromaffin-granule in membranes.
    Zallakian M; Knoth J; Metropoulos GE; Njus D
    Biochemistry; 1982 Mar; 21(5):1051-5. PubMed ID: 7074047
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Na+/Ca2+ countertransport in plasma membrane of rat pancreatic acinar cells.
    Bayerdörffer E; Haase W; Schulz I
    J Membr Biol; 1985; 87(2):107-19. PubMed ID: 2416927
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The content of long-chain free fatty acids and their effect on energy transduction in chromaffin granule ghosts.
    Husebye ES; Flatmark T
    J Biol Chem; 1984 Dec; 259(24):15272-6. PubMed ID: 6150933
    [TBL] [Abstract][Full Text] [Related]  

  • 58. ATP-stimulated accumulation of calcium by chromaffin granules and mitochondria from the adrenal medulla.
    von Grafenstein HR; Neumann E
    Biochem Biophys Res Commun; 1983 Nov; 117(1):245-51. PubMed ID: 6607051
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Characterization of the chromobindins. Soluble proteins that bind to the chromaffin granule membrane in the presence of Ca2+.
    Creutz CE; Dowling LG; Sando JJ; Villar-Palasi C; Whipple JH; Zaks WJ
    J Biol Chem; 1983 Dec; 258(23):14664-74. PubMed ID: 6227626
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Hydroxytryptamine transport by the bovine chromaffin-granule membrane.
    Phillips JH
    Biochem J; 1978 Mar; 170(3):673-9. PubMed ID: 25654
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.