These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 7332745)

  • 1. Polyelectrolyte theory of charged-ligand binding to nucleic acids.
    Guéron M; Weisbuch G
    Biochimie; 1981; 63(11-12):821-5. PubMed ID: 7332745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Salt effects on polyelectrolyte-ligand binding: comparison of Poisson-Boltzmann, and limiting law/counterion binding models.
    Sharp KA; Friedman RA; Misra V; Hecht J; Honig B
    Biopolymers; 1995 Aug; 36(2):245-62. PubMed ID: 7492748
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuum molecular electrostatics, salt effects, and counterion binding--a review of the Poisson-Boltzmann theory and its modifications.
    Grochowski P; Trylska J
    Biopolymers; 2008 Feb; 89(2):93-113. PubMed ID: 17969016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Counterion condensation and shape within Poisson-Boltzmann theory.
    Lamm G; Pack GR
    Biopolymers; 2010 Jul; 93(7):619-39. PubMed ID: 20213767
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A field-dissociation relation for polyelectrolytes with an application to field-induced conformational changes of polynucleotides.
    Manning GS
    Biophys Chem; 1977 Nov; 7(3):189-92. PubMed ID: 911986
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of the counterion condensation theory of polyelectrolytes.
    Stigter D
    Biophys J; 1995 Aug; 69(2):380-8. PubMed ID: 8527651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The interpretation of Mg(2+) binding isotherms for nucleic acids using Poisson-Boltzmann theory.
    Misra VK; Draper DE
    J Mol Biol; 1999 Dec; 294(5):1135-47. PubMed ID: 10600372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Poisson-Boltzmann theory of the charge-induced adsorption of semi-flexible polyelectrolytes.
    Ubbink J; Khokhlov AR
    J Chem Phys; 2004 Mar; 120(11):5353-65. PubMed ID: 15267409
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermodynamic extent of counterion release upon binding oligolysines to single-stranded nucleic acids.
    Mascotti DP; Lohman TM
    Proc Natl Acad Sci U S A; 1990 Apr; 87(8):3142-6. PubMed ID: 2326273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of the Poisson Boltzmann polyelectrolyte model for analysis of equilibria between single-, double-, and triple-stranded polynucleotides in the presence of K(+), Na(+), and Mg(2+) ions.
    Korolev N; Lyubartsev AP; Nordenskiöld L
    J Biomol Struct Dyn; 2002 Oct; 20(2):275-90. PubMed ID: 12354079
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Density functional theory for the nonspecific binding of salt to polyelectrolytes: thermodynamic properties.
    Patra CN; Yethiraj A
    Biophys J; 2000 Feb; 78(2):699-706. PubMed ID: 10653783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effective charges of polyelectrolytes in a salt-free solution based on counterion chemical potential.
    Wang TY; Lee TR; Sheng YJ; Tsao HK
    J Phys Chem B; 2005 Dec; 109(47):22560-9. PubMed ID: 16853938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monte Carlo simulation and molecular theory of tethered polyelectrolytes.
    Hehmeyer OJ; Arya G; Panagiotopoulos AZ; Szleifer I
    J Chem Phys; 2007 Jun; 126(24):244902. PubMed ID: 17614585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of ion binding to DNA duplexes using a size-modified Poisson-Boltzmann theory.
    Chu VB; Bai Y; Lipfert J; Herschlag D; Doniach S
    Biophys J; 2007 Nov; 93(9):3202-9. PubMed ID: 17604318
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of polyelectrolyte theories for analysis of DNA melting in the presence of Na+ and Mg2+ ions.
    Korolev N; Lyubartsev AP; Nordenskiöld L
    Biophys J; 1998 Dec; 75(6):3041-56. PubMed ID: 9826624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Competitive electrostatic binding of charged ligands to polyelectrolytes: practical approach using the non-linear Poisson-Boltzmann equation.
    Rouzina I; Bloomfield VA
    Biophys Chem; 1997 Feb; 64(1-3):139-55. PubMed ID: 17029833
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational effect on small angle neutron scattering behavior of interacting polyelectrolyte solutions: a perspective of integral equation theory.
    Shew CY; Do C; Hong K; Liu Y; Porcar L; Smith GS; Chen WR
    J Chem Phys; 2012 Jul; 137(2):024907. PubMed ID: 22803562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Binding of ionic ligands to polyelectrolytes.
    Stigter D; Dill KA
    Biophys J; 1996 Oct; 71(4):2064-74. PubMed ID: 8889181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monte Carlo and Poisson-Boltzmann calculations of the fraction of counterions bound to DNA.
    Lamm G; Wong L; Pack GR
    Biopolymers; 1994 Feb; 34(2):227-37. PubMed ID: 8142591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Counterion-mediated protein adsorption into polyelectrolyte brushes.
    He SZ; Merlitz H; Sommer JU; Wu CX
    Eur Phys J E Soft Matter; 2015 Sep; 38(9):101. PubMed ID: 26385737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.