These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 7333999)

  • 21. Structural basis for the enhanced stability of protein model compounds and peptide backbone unit in ammonium ionic liquids.
    Vasantha T; Attri P; Venkatesu P; Devi RS
    J Phys Chem B; 2012 Oct; 116(39):11968-78. PubMed ID: 22963600
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of polyols on the stability of whey proteins in intermediate-moisture food model systems.
    Liu X; Zhou P; Tran A; Labuza TP
    J Agric Food Chem; 2009 Mar; 57(6):2339-45. PubMed ID: 19231894
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Alcohol induced conformational transitions of proteins and polypeptides. Thermodynamic studies of some model compounds.
    Mishra AK; Ahluwalia JC
    Int J Pept Protein Res; 1983 Mar; 21(3):322-30. PubMed ID: 6853033
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Oligopeptide-mediated helix stabilization of model peptides in aqueous solution.
    Maeda Y; Nakagawa T; Kuroda Y
    J Pept Sci; 2003 Feb; 9(2):106-13. PubMed ID: 12630695
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sugars and polyols inhibit fibrillogenesis of type I collagen by disrupting hydrogen-bonded water bridges between the helices.
    Kuznetsova N; Chi SL; Leikin S
    Biochemistry; 1998 Aug; 37(34):11888-95. PubMed ID: 9718312
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Stability of proteins in the presence of polyols estimated from their guanidinium chloride-induced transition curves at different pH values and 25 degrees C.
    Haque I; Islam A; Singh R; Moosavi-Movahedi AA; Ahmad F
    Biophys Chem; 2006 Feb; 119(3):224-33. PubMed ID: 16226834
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Protection effect of polyols on Rhizopus chinensis lipase counteracting the deactivation from high pressure and high temperature treatment.
    Chen G; Zhang Q; Lu Q; Feng B
    Int J Biol Macromol; 2019 Apr; 127():555-562. PubMed ID: 30664969
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of polyol osmolytes on DeltaG(D), the Gibbs energy of stabilisation of proteins at different pH values.
    Haque I; Singh R; Moosavi-Movahedi AA; Ahmad F
    Biophys Chem; 2005 Aug; 117(1):1-12. PubMed ID: 15905020
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hydrophilicity of polar amino acid side-chains is markedly reduced by flanking peptide bonds.
    Roseman MA
    J Mol Biol; 1988 Apr; 200(3):513-22. PubMed ID: 3398047
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analysis of polyols in urine by liquid chromatography-tandem mass spectrometry: a useful tool for recognition of inborn errors affecting polyol metabolism.
    Wamelink MM; Smith DE; Jakobs C; Verhoeven NM
    J Inherit Metab Dis; 2005; 28(6):951-63. PubMed ID: 16435188
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Aqueous and hydro-alcoholic media effects on polyols.
    Asare-Addo K; Conway BR; Hajamohaideen MJ; Kaialy W; Nokhodchi A; Larhrib H
    Colloids Surf B Biointerfaces; 2013 Nov; 111():24-9. PubMed ID: 23777788
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of polyols on polyethylene glycol (PEG)-induced precipitation of proteins: Impact on solubility, stability and conformation.
    Kumar V; Sharma VK; Kalonia DS
    Int J Pharm; 2009 Jan; 366(1-2):38-43. PubMed ID: 18809481
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Preferential binding of two compatible solutes to the glycan moieties of Peniophora lycii phytase.
    Bagger HL; Fuglsang CC; Westh P
    Biochemistry; 2003 Sep; 42(34):10295-300. PubMed ID: 12939159
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interactions of Glycerol, Diglycerol, and Water Studied Using Attenuated Total Reflection Infrared Spectroscopy.
    Habuka A; Yamada T; Nakashima S
    Appl Spectrosc; 2020 Jul; 74(7):767-779. PubMed ID: 32223430
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Peptide backbone effect on hydration free energies of amino acid side chains.
    Hajari T; van der Vegt NF
    J Phys Chem B; 2014 Nov; 118(46):13162-8. PubMed ID: 25338222
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Unraveling the Molecular Mechanism of Enthalpy Driven Peptide Folding by Polyol Osmolytes.
    Gilman-Politi R; Harries D
    J Chem Theory Comput; 2011 Nov; 7(11):3816-28. PubMed ID: 26598272
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The solubilities of five cyclic dipeptides in water and in aqueous urea at 298.15 K: a quantitative model for the denaturation of proteins in aqueous urea solutions.
    Sijpkes AH; van de Kleut GJ; Gill SC
    Biophys Chem; 1994 Sep; 52(1):75-82. PubMed ID: 7948713
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Origins of protein denatured state compactness and hydrophobic clustering in aqueous urea: inferences from nonpolar potentials of mean force.
    Shimizu S; Chan HS
    Proteins; 2002 Dec; 49(4):560-6. PubMed ID: 12402364
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A simple experimental model for hydrophobic interactions in proteins.
    Lawson EQ; Sadler AJ; Harmatz D; Brandau DT; Micanovic R; MacElroy RD; Middaugh CR
    J Biol Chem; 1984 Mar; 259(5):2910-2. PubMed ID: 6699000
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Polyols in grape berry: transport and metabolic adjustments as a physiological strategy for water-deficit stress tolerance in grapevine.
    Conde A; Regalado A; Rodrigues D; Costa JM; Blumwald E; Chaves MM; Gerós H
    J Exp Bot; 2015 Feb; 66(3):889-906. PubMed ID: 25433029
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.