These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 7334021)
1. Phosphate transport in rat liver mitochondria: location of sulfhydryl groups essential for transport activities. Wehrle JP; Pedersen PL J Bioenerg Biomembr; 1981 Dec; 13(5-6):285-94. PubMed ID: 7334021 [TBL] [Abstract][Full Text] [Related]
2. Phosphate transport in rat liver mitochondria. Properties of a Ca2+-activated uptake process in inverted inner membrane vesicles. Wehrle JP; Pedersen PL J Biol Chem; 1979 Aug; 254(15):7269-75. PubMed ID: 110804 [No Abstract] [Full Text] [Related]
3. Control of the mitochondrial inner membrane permeability by sulfhydryl groups. Lê-Quôc K; Lê-Quôc D Arch Biochem Biophys; 1982 Jul; 216(2):639-51. PubMed ID: 7114855 [No Abstract] [Full Text] [Related]
4. Phosphate transport across the mitochondrial membrane: the influence of thiol oxidation and of Mg++ on inhibition by mercurials. Siliprandi D; Toninello A; Zoccarato F; Bindoli A FEBS Lett; 1975 Mar; 51(1):15-7. PubMed ID: 1123044 [No Abstract] [Full Text] [Related]
5. Phosphate transport protein of rat heart mitochondria: location of its SH-groups and exploration of their environment. Ligeti E; Fonyó A Biochim Biophys Acta; 1989 Feb; 973(2):170-5. PubMed ID: 2917158 [TBL] [Abstract][Full Text] [Related]
6. Measurement of phosphate transport in mitochondria and in inverted inner membrane vesicles of rat liver. Coty WA; Wehrle JP; Pedersen PL Methods Enzymol; 1979; 56():353-9. PubMed ID: 459871 [No Abstract] [Full Text] [Related]
7. Phosphate transport in rat liver mitochondria. Energy-dependent accumulation of phosphate by inverted inner membrane vesicles. Wehrle JP; Cintrón NM; Pedersen PL J Biol Chem; 1978 Dec; 253(23):8598-603. PubMed ID: 152316 [No Abstract] [Full Text] [Related]
8. Phosphate carrier of liver mitochondria: the reaction of its SH groups with mersalyl, 5,5'-dithio-bis-nitrobenzoate, and N-ethylmaleimide and the modulation of reactivity by the energy state of the mitochondria. Fonyo A; Vignais PV J Bioenerg Biomembr; 1980 Aug; 12(3-4):137-49. PubMed ID: 7217038 [TBL] [Abstract][Full Text] [Related]
9. Mitochondrial membrane protein thiol reactivity with N-ethylmaleimide or mersalyl is modified by Ca2+: correlation with mitochondrial permeability transition. Kowaltowski AJ; Vercesi AE; Castilho RF Biochim Biophys Acta; 1997 Feb; 1318(3):395-402. PubMed ID: 9048976 [TBL] [Abstract][Full Text] [Related]
10. Effect of Ca2+, peroxides, SH reagents, phosphate and aging on the permeability of mitochondrial membranes. Rizzuto R; Pitton G; Azzone GF Eur J Biochem; 1987 Jan; 162(2):239-49. PubMed ID: 3803384 [TBL] [Abstract][Full Text] [Related]
11. Phosphate transport in rat liver mitochondria. Membrane components labeled by N-ethylmaleimide during inhibition of transport. Coty WA; Pedersen PL J Biol Chem; 1975 May; 250(9):3515-21. PubMed ID: 1123352 [TBL] [Abstract][Full Text] [Related]
12. Phosphate transport in mitochondria and submitochondrial particles: the influence of thiol oxidation. Zoccarato F; Rugolo M; Siliprandi D J Bioenerg Biomembr; 1977 Jun; 9(3):203-12. PubMed ID: 18265517 [TBL] [Abstract][Full Text] [Related]
13. The metabolism of deoxyguanosine in mitochondria. Characterization of the uptake process. Watkins LF; Lewis RA Mol Cell Biochem; 1987 Sep; 77(1):71-7. PubMed ID: 3696164 [TBL] [Abstract][Full Text] [Related]
14. [In vitro effects of E. coli endotoxin on the membrane permeability and substrate transport of isolated rat liver mitochondria]. Kopprasch S; Hörkner U; Knauth H; Orlik H; Scheuch DW Biomed Biochim Acta; 1987; 46(1):59-66. PubMed ID: 3555480 [TBL] [Abstract][Full Text] [Related]
15. Special features of Pi transport in pig heart and rat liver mitochondria as revealed by 6,6'-dithiodinicotinic acid (CPDS). Abou-Khalil S; Sabidie-Pialoux N; Gautheron DC Biochimie; 1975; 57(9):1087-94. PubMed ID: 1222144 [TBL] [Abstract][Full Text] [Related]
16. Mitochondrial protein import: modification of sulfhydryl groups of the inner mitochondrial membrane import machinery in Solanum tuberosum inhibits protein import. von Stedingk EM; Pavlov PF; Grinkevich VA; Glaser E Plant Mol Biol; 1997 Dec; 35(6):809-20. PubMed ID: 9426601 [TBL] [Abstract][Full Text] [Related]
17. Effect of amytal on the permeability of the mitochondrial membrane in rat liver mitochondria. Passarella S; Riccio P; Marra E; Quagliariello E Biochem Pharmacol; 1980 Sep; 29(17):2325-31. PubMed ID: 7426038 [No Abstract] [Full Text] [Related]
18. Use of sulfhydryl reagents to investigate branched chain alpha-keto acid transport in mitochondria. Drown PM; Torres N; Tovar AR; Davoodi J; Hutson SM Biochim Biophys Acta; 2000 Sep; 1468(1-2):273-84. PubMed ID: 11018671 [TBL] [Abstract][Full Text] [Related]
19. Inhibition of Na+-dependent phosphate transport by group-specific covalent reagents in rat kidney brush border membrane vesicles. Evidence for the involvement of tyrosine and sulfhydryl groups on the interior of the membrane. Pratt RD; Pedersen PL Arch Biochem Biophys; 1989 Jan; 268(1):9-19. PubMed ID: 2912384 [TBL] [Abstract][Full Text] [Related]
20. Energy-dependent variation of thiol groups reactivity or accessibility in rat liver mitochondria, revealed by measurements of labelled thiol reagents incorporation. Le Quoc D; Le Quoc K; Gaudemer Y Biochem Biophys Res Commun; 1976 Jan; 68(1):106-13. PubMed ID: 1247448 [No Abstract] [Full Text] [Related] [Next] [New Search]