These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 7334059)

  • 1. Acetylcholinesterase in mammalian erythroid cells.
    Keyhani E; Maigne J
    J Cell Sci; 1981 Dec; 52():327-39. PubMed ID: 7334059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acetylcholinesterase in cat megakaryocyte. Evidence for extracellular secretion.
    Keyhani E; Maigne J
    Cell Biol Int Rep; 1981 Aug; 5(8):805-12. PubMed ID: 7026057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in malate dehydrogenase isoenzymes during differentiation of rabbit bone marrow erythroid cells.
    Setchenska MS; Arnstein HR
    Int J Biochem; 1979; 10(10):817-21. PubMed ID: 510663
    [No Abstract]   [Full Text] [Related]  

  • 4. Acetylcholinesterase in human erythroid cells.
    Skaer RJ
    J Cell Sci; 1973 May; 12(3):911-23. PubMed ID: 4198323
    [No Abstract]   [Full Text] [Related]  

  • 5. Cyclic AMP-binding and cyclic AMP-dependent protein kinase activities in the cytosol of differentiating bone marrow erythroblasts.
    Setchenska MS; Vassileva-Popova JG; Arnstein HR
    Biochem J; 1981 Jun; 196(3):893-7. PubMed ID: 6274323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acetylcholinesterase in the human erythron. I. Cytochemistry.
    Koekebakker M; Barr RD
    Am J Hematol; 1988 Aug; 28(4):252-9. PubMed ID: 3414673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immunophenotypic profile of nucleated erythroid progenitors during maturation in regenerating bone marrow.
    Fajtova M; Kovarikova A; Svec P; Kankuri E; Sedlak J
    Leuk Lymphoma; 2013 Nov; 54(11):2523-30. PubMed ID: 23452116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characteristics of the adenylyl cyclase system of differentiating rabbit bone marrow erythroblasts.
    Setchenska MS; Arnstein HR
    Biomed Biochim Acta; 1983; 42(9):1111-22. PubMed ID: 6322745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Change of pyruvate kinase isozymes from M2- to L-type during development of the red cell.
    Takegawa S; Fujii H; Miwa S
    Br J Haematol; 1983 Jul; 54(3):467-74. PubMed ID: 6407511
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cyclic AMP phosphodiesterase activity during differentiation of rabbit erythroid bone marrow cells.
    Setchenska MS; Arnstein HR; Vassileva-Popova JG
    Biochem J; 1981 Jun; 196(3):887-92. PubMed ID: 6274322
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Autophagy of mitochondria in rat bone marrow erythroid cells. Relation to nuclear extrusion.
    Heynen MJ; Tricot G; Verwilghen RL
    Cell Tissue Res; 1985; 239(1):235-9. PubMed ID: 3967280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Ultrastructural cytochemical demonstration of glucose-6-phosphatase activity in erythroblasts from human bone marrow. The significance of glucose-6-phosphatase activity positive erythroblasts].
    Kimura T; Kishimoto Y; Takayama S; Fujitake H; Yamauchi M; Okamoto Y; Yasunaga K; Kanamura S
    Rinsho Ketsueki; 1985 Dec; 26(12):1955-62. PubMed ID: 3009912
    [No Abstract]   [Full Text] [Related]  

  • 13. Carbonic anhydrase isoenzymes I and II in rabbit erythroid cells.
    Spencer N; Peller S
    Biochem Soc Trans; 1976; 4(6):1153-5. PubMed ID: 828595
    [No Abstract]   [Full Text] [Related]  

  • 14. Congenital dyserythropoietic anaemia with novel intra-erythroblastic and intra-erythrocytic inclusions.
    Wickramasinghe SN; Illum N; Wimberley PD
    Br J Haematol; 1991 Oct; 79(2):322-30. PubMed ID: 1659863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characteristics of the beta-adrenergic adenylate cyclase system of developing rabbit bone-marrow erythroblasts.
    Setchenska MS; Arnstein HR
    Biochem J; 1983 Feb; 210(2):559-66. PubMed ID: 6860310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A quantitative ultrastructural study of normal rat erythroblasts and reticulocytes.
    Heynen MJ; Verwilghen RL
    Cell Tissue Res; 1982; 224(2):397-408. PubMed ID: 7105141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [A family of hereditary refractory sideroblastic anemia with markedly reduced delta-aminolevulinic acid synthetase activity in bone marrow erythroblasts].
    Hirabayashi N; Utsumi M; Nakashima I; Yasuma A; Aoki N
    Rinsho Ketsueki; 1976 Jan; 17(1):45-50. PubMed ID: 987283
    [No Abstract]   [Full Text] [Related]  

  • 18. Ultrastructural studies of the bone marrow in sickle cell anaemia. II. The morphology of erythropoietic cells and their response to deoxygenation in vitro.
    Grasso JA; Sullivan AL; Sullivan LW
    Br J Haematol; 1975 Nov; 31(3):381-9. PubMed ID: 1201249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The appearance of acetylcholinesterase in the myotome of the embryonic rabbit. An electron microscope cytochemical and biochemical study.
    Tennyson VM; Brzin M; Slotwiner P
    J Cell Biol; 1971 Dec; 51(3):703-21. PubMed ID: 4256859
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple vacuoles formation in erythroblasts in an erythroleukaemic patient.
    Miura AB
    Scand J Haematol; 1976 Mar; 16(3):183-8. PubMed ID: 179129
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.