BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 7334369)

  • 1. L-Aspartate transport into plasma membrane vesicles derived from rat brain synaptosomes.
    Marvizón JG; Mayor F; Aragón MC; Giménez C; Valdivieso F
    J Neurochem; 1981 Dec; 37(6):1401-6. PubMed ID: 7334369
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tryptophan transport into plasma membrane vesicles derived from rat brain synaptosomes.
    Herrero E; Aragón MC; Giménez C; Valdivieso F
    J Neurochem; 1983 Feb; 40(2):332-7. PubMed ID: 6822827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glycine transport into plasma-membrane vesicles derived from rat brain synaptosomes.
    Mayor F; Marvizón JG; Aragón MC; Gimenez C; Valdivieso F
    Biochem J; 1981 Sep; 198(3):535-41. PubMed ID: 7326021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tyrosine transport by membrane vesicles isolated from rat brain.
    Aragón MC; Giménez C; Mayor F; Marvizón JG; Valdivieso F
    Biochim Biophys Acta; 1981 Sep; 646(3):465-70. PubMed ID: 7284373
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aspartate transport in synaptosomes from rat brain.
    Erecińska M; Wantorsky D; Wilson DF
    J Biol Chem; 1983 Aug; 258(15):9069-77. PubMed ID: 6874678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. beta-Alanine transport into plasma membrane vesicles derived from rat brain synaptosomes.
    Zafra F; Aragon MC; Valdivieso F; Gimenez C
    Neurochem Res; 1984 May; 9(5):695-707. PubMed ID: 6433216
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Active transport of L-glutamate by membrane vesicles isolated from rat brain.
    Kanner BI; Sharon I
    Biochemistry; 1978 Sep; 17(19):3949-53. PubMed ID: 708689
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ontogenetic studies on tryptophan transport into plasma membrane vesicles derived from rat brain synaptosomes: effect of thyroid hormones.
    Herrero E; Aragon MC; Diez-Guerra J; Valdivieso F; Gimenez C
    Neurochem Res; 1985 May; 10(5):579-89. PubMed ID: 4010873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heterogeneity of sodium-dependent excitatory amino acid uptake mechanisms in rat brain.
    Ferkany J; Coyle JT
    J Neurosci Res; 1986; 16(3):491-503. PubMed ID: 2877096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transport of cysteate by synaptosomes isolated from rat brain: evidence that it utilizes the same transporter as aspartate, glutamate, and cysteine sulfinate.
    Wilson DF; Pastuszko A
    J Neurochem; 1986 Oct; 47(4):1091-7. PubMed ID: 2875128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic and pharmacological analysis of L-[35S]cystine transport into rat brain synaptosomes.
    Flynn J; McBean GJ
    Neurochem Int; 2000 May; 36(6):513-21. PubMed ID: 10762088
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Na+-gradient-dependent transport of L-proline and analysis of its carrier system in brush-border membrane vesicles of the guinea-pig ileum.
    Hayashi K; Yamamoto SI; Ohe K; Miyoshi A; Kawasaki T
    Biochim Biophys Acta; 1980 Oct; 601(3):654-63. PubMed ID: 7417443
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of kainic acid in rat brain synaptosomes: the involvement of calcium.
    Pastuszko A; Wilson DF; Erecińska M
    J Neurochem; 1984 Sep; 43(3):747-54. PubMed ID: 6747632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of potassium and chloride ions on the Na+/acidic amino acid cotransport system in rat intestinal brush-border membrane vesicles.
    Corcelli A; Storelli C
    Biochim Biophys Acta; 1983 Jul; 732(1):24-31. PubMed ID: 6135444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of vanadium on different adenosinetriphosphatases and binding of 3H-labeled ouabain and calcium-45 to rat brain synaptosomes.
    Mishra SK; Osborn RL; Desaiah D
    J Toxicol Environ Health; 1981 Sep; 8(3):449-61. PubMed ID: 6212691
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for cysteine sulfinate as a neurotransmitter.
    Recasens M; Varga V; Nanopoulos D; Saadoun F; Vincendon G; Benavides J
    Brain Res; 1982 May; 239(1):153-73. PubMed ID: 6124301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electroneutral Na+/dicarboxylic amino acid cotransport in rat intestinal brush border membrane vesicles.
    Corcelli A; Prezioso G; Palmieri F; Storelli C
    Biochim Biophys Acta; 1982 Jul; 689(1):97-105. PubMed ID: 6125215
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparative study and partial characterization of multi-uptake systems for gamma-aminobutyric acid.
    Wood JD; Sidhu HS
    J Neurochem; 1987 Oct; 49(4):1202-8. PubMed ID: 2887634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ubiquitin-directed antibodies inhibit neuronal transporters in rat brain synaptosomes.
    Meyer EM; West CM; Stevens BR; Chau V; Nguyen MT; Judkins JH
    J Neurochem; 1987 Dec; 49(6):1815-9. PubMed ID: 2890715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dissociation of [3H]L-glutamate uptake from L-glutamate-induced [3H]D-aspartate release by 3-hydroxy-4,5,6,6a-tetrahydro-3aH-pyrrolo[3,4-d]isoxazole-4-carboxylic acid and 3-hydroxy-4,5,6,6a-tetrahydro-3aH-pyrrolo[3,4-d]isoxazole-6-carboxylic acid, two conformationally constrained aspartate and glutamate analogs.
    Funicello M; Conti P; De Amici M; De Micheli C; Mennini T; Gobbi M
    Mol Pharmacol; 2004 Sep; 66(3):522-9. PubMed ID: 15322243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.