These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 733464)

  • 1. Analysis of variability in pylon transducer signals.
    Jones D; Paul JP
    Prosthet Orthot Int; 1978 Dec; 2(3):161-6. PubMed ID: 733464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transducer-based comparisons of the prosthetic feet used by transtibial amputees for different walking activities: a pilot study.
    Neumann ES; Yalamanchili K; Brink J; Lee JS
    Prosthet Orthot Int; 2012 Jun; 36(2):203-16. PubMed ID: 22344316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Normal human locomotion.
    Hughes J; Jacobs N
    Prosthet Orthot Int; 1979 Apr; 3(1):4-12. PubMed ID: 471705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Repeatability of kinetic and kinematic measurements in gait studies of the lower limb amputee.
    Zahedi MS; Spence WD; Solomonidis SE; Paul JP
    Prosthet Orthot Int; 1987 Aug; 11(2):55-64. PubMed ID: 3658649
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation of forces at the interface between an artificial limb and an implant directly fixed into the femur in above-knee amputees.
    Stephenson P; Seedhom BB
    J Orthop Sci; 2002; 7(3):292-7. PubMed ID: 12077652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Normal and pathological human gait analysis using miniature triaxial shoe-borne load cells.
    Ranu HS
    Am J Phys Med; 1987 Feb; 66(1):1-11. PubMed ID: 3826323
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conventional patellar-tendon-bearing (PTB) socket/stump interface dynamic pressure distributions recorded during the prosthetic stance phase of gait of a trans-tibial amputee.
    Convery P; Buis AW
    Prosthet Orthot Int; 1998 Dec; 22(3):193-8. PubMed ID: 9881607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Below-knee amputation: a comparison of the effect of the SACH foot and single axis foot on electromyographic patterns during locomotion.
    Culham EG; Peat M; Newell E
    Prosthet Orthot Int; 1986 Apr; 10(1):15-22. PubMed ID: 3725562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compensatory mechanism involving the knee joint of the intact limb during gait in unilateral below-knee amputees.
    Beyaert C; Grumillier C; Martinet N; Paysant J; André JM
    Gait Posture; 2008 Aug; 28(2):278-84. PubMed ID: 18295487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D intersegmental knee loading in below-knee amputees across steady-state walking speeds.
    Fey NP; Neptune RR
    Clin Biomech (Bristol, Avon); 2012 May; 27(4):409-14. PubMed ID: 22138437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of a load cell and force-moment curves to compare transverse plane moment loads on transtibial residual limbs: A preliminary investigation.
    Neumann ES; Brink J; Yalamanchili K; Lee JS
    Prosthet Orthot Int; 2014 Jun; 38(3):253-62. PubMed ID: 23921596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical work performed by individual limbs of transfemoral amputees during step-to-step transitions: Effect of walking velocity.
    Bonnet X; Villa C; Fodé P; Lavaste F; Pillet H
    Proc Inst Mech Eng H; 2014 Jan; 228(1):60-6. PubMed ID: 24288379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bouncy knee in a semi-automatic knee lock prosthesis.
    Fisher LD; Lord M
    Prosthet Orthot Int; 1986 Apr; 10(1):35-9. PubMed ID: 3523432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Myoelectric neural interface enables accurate control of a virtual multiple degree-of-freedom foot-ankle prosthesis.
    Tkach DC; Lipschutz RD; Finucane SB; Hargrove LJ
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650499. PubMed ID: 24187314
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of a flexible pylon system on functional mobility of transtibial amputees. A prospective randomized study.
    Lass R; Kickinger W; Guglia P; Kubista B; Kastner J; Windhager R; Holzer G
    Eur J Phys Rehabil Med; 2013 Dec; 49(6):837-47. PubMed ID: 23860421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gait patterns in above-knee amputee patients: hydraulic swing control vs constant-friction knee components.
    Murray MP; Mollinger LA; Sepic SB; Gardner GM; Linder MT
    Arch Phys Med Rehabil; 1983 Aug; 64(8):339-45. PubMed ID: 6882172
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Foot loading characteristics of amputees and normal subjects.
    Summers GD; Morrison JD; Cochrane GM
    Prosthet Orthot Int; 1987 Apr; 11(1):33-9. PubMed ID: 3588262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gait initiation of persons with below-knee amputation: the characterization and comparison of force profiles.
    Rossi SA; Doyle W; Skinner HB
    J Rehabil Res Dev; 1995 May; 32(2):120-7. PubMed ID: 7562651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ground reaction forces and center of pressure patterns in the gait of children with amputation: preliminary report.
    Zernicke RF; Hoy MG; Whiting WC
    Arch Phys Med Rehabil; 1985 Nov; 66(11):736-41. PubMed ID: 4062525
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanics of the through-knee prosthesis.
    Hughes J
    Prosthet Orthot Int; 1983 Aug; 7(2):96-9. PubMed ID: 6622241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.