These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 7336758)

  • 21. Recovery and metabolism of xanthohumol in germ-free and human microbiota-associated rats.
    Hanske L; Loh G; Sczesny S; Blaut M; Braune A
    Mol Nutr Food Res; 2010 Oct; 54(10):1405-13. PubMed ID: 20397197
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The role of oral nitrate in the nitrosation of [14C]proline by conventional microflora and germ-free rats.
    Mallett AK; Rowland IR; Walters DG; Gangolli SD; Cottrell RC; Massey RC
    Carcinogenesis; 1985 Nov; 6(11):1585-8. PubMed ID: 4053279
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Thiamine in germfree and conventional animals: effect of the intestinal microflora on thiamine metabolism of the rat.
    WOSTMANN BS; KNIGHT PL; KAN DF
    Ann N Y Acad Sci; 1962 Apr; 98():516-27. PubMed ID: 14008362
    [No Abstract]   [Full Text] [Related]  

  • 24. Metabolism of the dietary carcinogen TRP-P-1 in rats.
    Rafter JJ; Gustafsson JA
    Carcinogenesis; 1986 Aug; 7(8):1291-5. PubMed ID: 3731383
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evidence for involvement of non-biliary excretion into the intestines in the formation of methylsulphonyl-containing metabolites of 2-chloro-N-isopropylacetanilide (propachlor) by swine and rats.
    Aschbacher PW; Struble CB
    Xenobiotica; 1987 Sep; 17(9):1047-55. PubMed ID: 3687061
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Urinary and biliary metabolic patterns of chlorothalonil in germ-free and conventional rats.
    Hillenweck A; Corpet DE; Killeen JC; Bliss M; Cravedi JP
    J Agric Food Chem; 1999 Jul; 47(7):2898-903. PubMed ID: 10552583
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nitroreduction and formation of hemoglobin adducts in rats with a human intestinal microflora.
    Scheepers PT; Straetemans MM; Koopman JP; Bos RP
    Environ Health Perspect; 1994 Oct; 102 Suppl 6(Suppl 6):39-41. PubMed ID: 7889856
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluation of pharmacokinetic differences of acetaminophen in pseudo germ-free rats.
    Lee SH; An JH; Lee HJ; Jung BH
    Biopharm Drug Dispos; 2012 Sep; 33(6):292-303. PubMed ID: 22806334
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biliary excretion and intestinal metabolism in the intermediary metabolism of pentachlorothioanisole.
    Bakke JE; Feil VJ; Mulford DJ
    Xenobiotica; 1990 Jun; 20(6):601-5. PubMed ID: 2219954
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The metabolic and pharmacokinetic disposition of mebendazole in the rat.
    Allan RJ; Watson TR
    Eur J Drug Metab Pharmacokinet; 1983; 8(4):373-81. PubMed ID: 6673974
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The bioavailability of apigenin-7-glucoside is influenced by human intestinal microbiota in rats.
    Hanske L; Loh G; Sczesny S; Blaut M; Braune A
    J Nutr; 2009 Jun; 139(6):1095-102. PubMed ID: 19403720
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Studies on the chromatographic fractionation of metabolites of benzo[a]pyrene in faeces and urine from germfree and conventional rats.
    Egestad B; Pettersson P; Sjövall J; Rafter J; Hyvönen K; Gustafsson JA
    Biomed Chromatogr; 1987; 2(3):120-34. PubMed ID: 3507218
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biliary excretion and microfloral transformation of major conjugated metabolites of 2,4-dinitrotoluene and 2,6-dinitrotoluene in the male Wistar rat.
    Mori MA; Sayama M; Shoji M; Inoue M; Kawagoshi T; Maeda M; Honda T
    Xenobiotica; 1997 Dec; 27(12):1225-36. PubMed ID: 9460228
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Disposition of caffeine and its metabolites in man.
    Tang-Liu DD; Williams RL; Riegelman S
    J Pharmacol Exp Ther; 1983 Jan; 224(1):180-5. PubMed ID: 6848742
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of the intestinal microbiota in the activation of the promutagen 2,6-dinitrotoluene to mutagenic urine metabolites and comparison of GI enzyme activities in germ-free and conventionalized male Fischer 344 rats.
    George SE; Chadwick RW; Kohan MJ; Allison JC; Williams RW; Chang J
    Cancer Lett; 1994 May; 79(2):181-7. PubMed ID: 8019977
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The relationship between nitro group reduction and the intestinal microflora.
    Wheeler LA; Soderberg FB; Goldman P
    J Pharmacol Exp Ther; 1975 Jul; 194(1):135-44. PubMed ID: 1097637
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 1,3,8-Trimethylallantoin: a major caffeine metabolite formed by rat liver.
    Arnaud MJ; Ben Zvi Z; Yaari A; Gorodischer R
    Res Commun Chem Pathol Pharmacol; 1986 Jun; 52(3):407-10. PubMed ID: 3738216
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Caffeine metabolism in the newborn.
    Aldridge A; Aranda JV; Neims AH
    Clin Pharmacol Ther; 1979 Apr; 25(4):447-53. PubMed ID: 428190
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of gut microflora on pharmacokinetics of hesperidin: a study on non-antibiotic and pseudo-germ-free rats.
    Jin MJ; Kim U; Kim IS; Kim Y; Kim DH; Han SB; Kim DH; Kwon OS; Yoo HH
    J Toxicol Environ Health A; 2010; 73(21-22):1441-50. PubMed ID: 20954071
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In vitro biotransformation of red ginseng extract by human intestinal microflora: metabolites identification and metabolic profile elucidation using LC-Q-TOF/MS.
    Wang HY; Hua HY; Liu XY; Liu JH; Yu BY
    J Pharm Biomed Anal; 2014 Sep; 98():296-306. PubMed ID: 24973593
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.