BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 7336816)

  • 21. Rapid degeneration of glial cells during early Wallerian degeneration in the neonatal kitten spinal cord.
    Aldskogius H; Arvidsson J
    J Hirnforsch; 1989; 30(4):489-93. PubMed ID: 2794489
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Disruption of orientation tuning in visual cortex by artificially correlated neuronal activity.
    Weliky M; Katz LC
    Nature; 1997 Apr; 386(6626):680-5. PubMed ID: 9109486
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Unilateral atrophy of the optic nerve associated with retrograde and anterograde degenerations in the visual pathways in Slc: Wistar rats.
    Shibuya K; Tajima M; Yamate J
    J Vet Med Sci; 1993 Dec; 55(6):905-12. PubMed ID: 7509641
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microglial cells in the brain of Pleurodeles waltl (Urodela, Salamandridae) after wallerian degeneration in the primary visual system using Bandeiraea simplicifolia isolectin B4-cytochemistry.
    Naujoks-Manteuffel C; Niemann U
    Glia; 1994 Feb; 10(2):101-13. PubMed ID: 8168864
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Retrograde degeneration of the neurons of the cerebellar nuclei after partial removal of the associative cerebral cortex].
    Beloivanenko NI; Totibadze NK
    Arkh Anat Gistol Embriol; 1987 Jul; 93(7):19-22. PubMed ID: 3675207
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Extra-axonal environment and fibre directionality in the early development of the chick embryo optic chiasm: a light and scanning electron microscopic study.
    Navascués J; Rodríguez-Gallardo L; García-Martínez V; Alvarez IS; Martín-Partido G
    J Neurocytol; 1987 Jun; 16(3):299-310. PubMed ID: 3612182
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Vimentin immunoreactive glial cells in the fish optic nerve: implications for regeneration.
    Cohen I; Sivron T; Lavie V; Blaugrund E; Schwartz M
    Glia; 1994 Jan; 10(1):16-29. PubMed ID: 8300190
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Ultrastructural study of degeneration followed by optic nerve transection in adult cats--possible existence of centrifugal fibres to retina (author's transl)].
    Wakakura M
    Nippon Ganka Gakkai Zasshi; 1980; 84(3):206-14. PubMed ID: 7386315
    [No Abstract]   [Full Text] [Related]  

  • 29. Growth hormone and its receptor in projection neurons of the chick visual system: retinofugal and tectobulbar tracts.
    Baudet ML; Rattray D; Harvey S
    Neuroscience; 2007 Aug; 148(1):151-63. PubMed ID: 17618059
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Capacity of the retinogeniculate pathway to reorganize following ablation of visual cortical areas in developing and mature cats.
    Lomber SG; Payne BR; Cornwell P; Pearson HE
    J Comp Neurol; 1993 Dec; 338(3):432-57. PubMed ID: 8113448
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Expression of janusin (J1-160/180) in the retina and optic nerve of the developing and adult mouse.
    Bartsch U; Pesheva P; Raff M; Schachner M
    Glia; 1993 Sep; 9(1):57-69. PubMed ID: 8244531
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Relay of visual information to the lateral geniculate nucleus and the visual cortex in albino ferrets.
    Akerman CJ; Tolhurst DJ; Morgan JE; Baker GE; Thompson ID
    J Comp Neurol; 2003 Jun; 461(2):217-35. PubMed ID: 12724839
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electron microscopy study of astrocytic reaction in Wallerian degeneration of the rabbit optic nerve.
    Goncerzewicz A
    Neuropatol Pol; 1982; 20(1-2):47-60. PubMed ID: 7183932
    [No Abstract]   [Full Text] [Related]  

  • 34. Ultrastructural and paraphenylene studies of degeneration in the primate visual system: degenerative remnants persist for much longer than expected.
    Johnson BM; Sadun AA
    J Electron Microsc Tech; 1988 Feb; 8(2):179-83. PubMed ID: 2469780
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Gonadotropin-releasing hormone and receptor distributions in the visual processing regions of four coral reef fishes.
    Maruska KP; Tricas TC
    Brain Behav Evol; 2007; 70(1):40-56. PubMed ID: 17389794
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The pigeon retina: quantitative aspects of the optic nerve and ganglion cell layer.
    Binggeli RL; Paule WJ
    J Comp Neurol; 1969 Sep; 137(1):1-18. PubMed ID: 5808801
    [No Abstract]   [Full Text] [Related]  

  • 37. A new method to selectively injure the optic nerve using argon-laser photocoagulation.
    Kuroda S; Yamada E; Kani K
    Jpn J Ophthalmol; 1996; 40(3):344-55. PubMed ID: 8988424
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Determination of quantitative parameters of the fine structure in the visual cortex of the cat, also a methodological contribution on measuring the neuropil (author's transl)].
    Foh E; Haug H; König M; Rast A
    Microsc Acta; 1973 Nov; 75(2):148-68. PubMed ID: 4772422
    [No Abstract]   [Full Text] [Related]  

  • 39. Transneuronal retrograde degeneration of retinal ganglion cells following restricted lesions of striate cortex in the monkey.
    Johnson H; Cowey A
    Exp Brain Res; 2000 May; 132(2):269-75. PubMed ID: 10853951
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Neuroplasticity after unilateral visual cortex damage in the newborn cat.
    Rushmore RJ; Payne BR
    Behav Brain Res; 2004 Aug; 153(2):557-65. PubMed ID: 15265654
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.