BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 7337655)

  • 1. The yield shear stress of blood in branched models of the microcirculation. Effect of hematocrit and plasma macromolecules.
    Kiesewetter H; Radtke H; Schmid-Schönbein H
    Bibl Haematol; 1981; (47):14-20. PubMed ID: 7337655
    [No Abstract]   [Full Text] [Related]  

  • 2. Quantification of red blood cell deformation at high-hematocrit blood flow in microvessels.
    Alizadehrad D; Imai Y; Nakaaki K; Ishikawa T; Yamaguchi T
    J Biomech; 2012 Oct; 45(15):2684-9. PubMed ID: 22981440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microvascular blood flow resistance: Role of red blood cell migration and dispersion.
    Katanov D; Gompper G; Fedosov DA
    Microvasc Res; 2015 May; 99():57-66. PubMed ID: 25724979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of erythrocyte deformability and aggregation on the cell free layer and apparent viscosity of microscopic blood flows.
    Zhang J; Johnson PC; Popel AS
    Microvasc Res; 2009 May; 77(3):265-72. PubMed ID: 19323969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Red blood cell aggregates and their effect on non-Newtonian blood viscosity at low hematocrit in a two-fluid low shear rate microfluidic system.
    Mehri R; Mavriplis C; Fenech M
    PLoS One; 2018; 13(7):e0199911. PubMed ID: 30024907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rheology of the cerebral circulation.
    Kee DB; Wood JH
    Neurosurgery; 1984 Jul; 15(1):125-31. PubMed ID: 6206438
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Blood flow in capillary tubes: curvature and gravity effects.
    Hung TC; Hung TK; Bugliarello G
    Biorheology; 1980; 17(4):331-42. PubMed ID: 7260345
    [No Abstract]   [Full Text] [Related]  

  • 8. Blood viscosity, internal fluidity of the red cell, dynamic coagulation and the critical capillary radius as factors in the physiology and pathology of circulation and microcirculation.
    Dintenfass L
    Med J Aust; 1968 Apr; 1(16):688-96. PubMed ID: 5653329
    [No Abstract]   [Full Text] [Related]  

  • 9. Geometrical focusing of cells in a microfluidic device: an approach to separate blood plasma.
    Faivre M; Abkarian M; Bickraj K; Stone HA
    Biorheology; 2006; 43(2):147-59. PubMed ID: 16687784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Hemorheology in microcirculation].
    Taniguchi K
    Kokyu To Junkan; 1989 Jul; 37(7):707-15. PubMed ID: 2799091
    [No Abstract]   [Full Text] [Related]  

  • 11. The role of plasma in the yield stress of blood.
    Windberger U; Sparer A; Elsayad K
    Clin Hemorheol Microcirc; 2023; 84(4):369-383. PubMed ID: 37334582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of erythrocyte orientation in flow by spin labeling III--erythrocyte orientation and rheological conditions.
    Bitbol M; Leterrier F; Dufaux J; Quemada D
    Biorheology; 1985; 22(1):43-53. PubMed ID: 3986318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Disturbed blood flow structuring as critical factor of hemorheological disorders in microcirculation.
    Mchedlishvili G
    Clin Hemorheol Microcirc; 1998 Dec; 19(4):315-25. PubMed ID: 9972669
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of anomalous blood viscosity in confined shear flow.
    Thiébaud M; Shen Z; Harting J; Misbah C
    Phys Rev Lett; 2014 Jun; 112(23):238304. PubMed ID: 24972235
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of microgravity on microcirculation.
    Majhi SN; Nair VR
    Microgravity Sci Technol; 1990 Sep; 3(2):117-20. PubMed ID: 11541479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Importance of the problem of blood microrheology for pathology].
    Mchedlishvili GI
    Patol Fiziol Eksp Ter; 1986; (2):3-11. PubMed ID: 3520450
    [No Abstract]   [Full Text] [Related]  

  • 17. Plasma and platelet skimming at T-junctions.
    Perkkiö J; Wurzinger LJ; Schmid-Schönbein H
    Thromb Res; 1987 Mar; 45(5):517-26. PubMed ID: 3590090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tube flow of human blood at near zero shear.
    Gaehtgens P
    Biorheology; 1987; 24(4):367-76. PubMed ID: 3663895
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of whole blood and plasma viscosity by means of flow curve analysis.
    Ruef P; Gehm J; Gehm L; Felbinger C; Pöschl J; Kuss N
    Gen Physiol Biophys; 2014; 33(3):285-93. PubMed ID: 24968409
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-Newtonian viscosity of human blood: flow-induced changes in microstructure.
    Thurston GB
    Biorheology; 1994; 31(2):179-92. PubMed ID: 8729480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.