BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 7337704)

  • 1. Products of fatty acid synthesis by a particulate fraction from germinating pea (Pisum sativum L.).
    Sanchez J; Harwood JL
    Biochem J; 1981 Oct; 199(1):221-6. PubMed ID: 7337704
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fatty acid elongation by a particulate fraction from germinating pea.
    Jordan BR; Harwood JL
    Biochem J; 1980 Dec; 191(3):791-7. PubMed ID: 7283974
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fatty acid biosynthesis by a particulate preparation from germinating pea.
    Bolton P; Harwood JL
    Biochem J; 1977 Nov; 168(2):261-9. PubMed ID: 579600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipase-induced alterations of fatty acid synthesis by subcellular fractions from germinating pea (Pisum sativum L.).
    Sanchez J; Jordan BR; Kay J; Harwood JL
    Biochem J; 1982 May; 204(2):463-70. PubMed ID: 7115342
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Some characteristics of soluble fatty acid synthesis in germinating pea seeds.
    Bolton P; Harwood JL
    Biochim Biophys Acta; 1977 Oct; 489(1):15-24. PubMed ID: 20971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Activities of 3-hydroxy-3-methylglutaryl-CoA reductase and acetyl-CoA carboxylase and rate of biosynthesis of mevalonic acid, squalene, sterols and fatty acids from [1-14C]acetyl-CoA and [2-14C]malonyl-CoA in rat liver: changes induced by daily rhythm].
    Poliakova ED; Dizhe EB; Klimova TA; Denisenko TV; Vasil'eva LE
    Biokhimiia; 1981 Jan; 46(1):126-39. PubMed ID: 6113851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of triacylglycerol biosynthesis in embryos and microsomal preparations from the developing seeds of Cuphea lanceolata.
    Bafor M; Jonsson L; Stobart AK; Stymne S
    Biochem J; 1990 Nov; 272(1):31-8. PubMed ID: 2264835
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Localization of chloroplastic fatty acid synthesis de novo in the stroma.
    Walker KA; Harwood JL
    Biochem J; 1985 Mar; 226(2):551-6. PubMed ID: 3994672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Concentrations of long-chain acyl-acyl carrier proteins during fatty acid synthesis by chloroplasts isolated from pea (Pisum sativum), safflower (Carthamus tinctoris), and amaranthus (Amaranthus lividus) leaves.
    Roughan G; Nishida I
    Arch Biochem Biophys; 1990 Jan; 276(1):38-46. PubMed ID: 2297229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. alpha-Hydroxylation of newly synthesised fatty acids by a soluble fraction from germinating pea.
    Jordan BR; Harwood JL
    Biochim Biophys Acta; 1979 Apr; 573(1):218-21. PubMed ID: 454636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of plant fatty acid synthesis by nitroimidazoles.
    Jones AV; Harwood JL; Stratford MR; Stumpf PK
    Biochem J; 1981 Jul; 198(1):193-8. PubMed ID: 7325993
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fatty acid metabolism in the microsomal fraction of developing rabbit brain.
    Carey EM; Parkin L
    Biochim Biophys Acta; 1975 Feb; 380(2):176-89. PubMed ID: 1120139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of fatty acid elongase enzymes from germinating pea seeds.
    Barrett PB; Harwood JL
    Phytochemistry; 1998 Aug; 48(8):1295-304. PubMed ID: 9720312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stromal concentrations of coenzyme A and its esters are insufficient to account for rates of chloroplast fatty acid synthesis: evidence for substrate channelling within the chloroplast fatty acid synthase.
    Roughan PG
    Biochem J; 1997 Oct; 327 ( Pt 1)(Pt 1):267-73. PubMed ID: 9355762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of the selective herbicide fluazifop on fatty acid synthesis in pea (Pisum sativum) and barley (Hordeum vulgare).
    Walker KA; Ridley SM; Harwood JL
    Biochem J; 1988 Sep; 254(3):811-7. PubMed ID: 3196294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Activities of 3-hydroxyl-3-methylglutaryl-CoA reductase and acetyl-CoA carboxylase and the rate of mevalonic acid, squalene, sterol and fatty acid biosynthesis from [1-14C]acetyl-CoA and [2-14C]malonyl-CoA in rat liver: effects of Triton WR 1339, starvation and cholesterol diet].
    Poliakova ED; Dizhe EB; Klimova TA; Denisenko TV; Vasil'eva LE
    Biokhimiia; 1981 Feb; 46(2):296-305. PubMed ID: 6113854
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fat metabolism in higher plants. Production of short- and medium-chain acyl-acyl carrier protein by spinach stroma preparations treated with cerulenin.
    Packter NM; Stumpf PK
    Biochim Biophys Acta; 1975 Dec; 409(3):274-82. PubMed ID: 1203245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elongation of fatty acids by microsomal fractions from the brain of the developing rat.
    Brophy PJ; Vance DE
    Biochem J; 1975 Dec; 152(3):495-501. PubMed ID: 818998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The biosynthesis of linoleate from oleoyl-CoA via oleoyl-phosphatidylcholine in microsomes of developing safflower seeds.
    Stymne S; Appelqvist LA
    Eur J Biochem; 1978 Oct; 90(2):223-9. PubMed ID: 710426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ricinoleic acid biosynthesis and triacylglycerol assembly in microsomal preparations from developing castor-bean (Ricinus communis) endosperm.
    Bafor M; Smith MA; Jonsson L; Stobart K; Stymne S
    Biochem J; 1991 Dec; 280 ( Pt 2)(Pt 2):507-14. PubMed ID: 1747126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.