These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 7337704)
1. Products of fatty acid synthesis by a particulate fraction from germinating pea (Pisum sativum L.). Sanchez J; Harwood JL Biochem J; 1981 Oct; 199(1):221-6. PubMed ID: 7337704 [TBL] [Abstract][Full Text] [Related]
2. Fatty acid elongation by a particulate fraction from germinating pea. Jordan BR; Harwood JL Biochem J; 1980 Dec; 191(3):791-7. PubMed ID: 7283974 [TBL] [Abstract][Full Text] [Related]
3. Fatty acid biosynthesis by a particulate preparation from germinating pea. Bolton P; Harwood JL Biochem J; 1977 Nov; 168(2):261-9. PubMed ID: 579600 [TBL] [Abstract][Full Text] [Related]
4. Lipase-induced alterations of fatty acid synthesis by subcellular fractions from germinating pea (Pisum sativum L.). Sanchez J; Jordan BR; Kay J; Harwood JL Biochem J; 1982 May; 204(2):463-70. PubMed ID: 7115342 [TBL] [Abstract][Full Text] [Related]
5. Some characteristics of soluble fatty acid synthesis in germinating pea seeds. Bolton P; Harwood JL Biochim Biophys Acta; 1977 Oct; 489(1):15-24. PubMed ID: 20971 [TBL] [Abstract][Full Text] [Related]
6. [Activities of 3-hydroxy-3-methylglutaryl-CoA reductase and acetyl-CoA carboxylase and rate of biosynthesis of mevalonic acid, squalene, sterols and fatty acids from [1-14C]acetyl-CoA and [2-14C]malonyl-CoA in rat liver: changes induced by daily rhythm]. Poliakova ED; Dizhe EB; Klimova TA; Denisenko TV; Vasil'eva LE Biokhimiia; 1981 Jan; 46(1):126-39. PubMed ID: 6113851 [TBL] [Abstract][Full Text] [Related]
7. Regulation of triacylglycerol biosynthesis in embryos and microsomal preparations from the developing seeds of Cuphea lanceolata. Bafor M; Jonsson L; Stobart AK; Stymne S Biochem J; 1990 Nov; 272(1):31-8. PubMed ID: 2264835 [TBL] [Abstract][Full Text] [Related]
8. Localization of chloroplastic fatty acid synthesis de novo in the stroma. Walker KA; Harwood JL Biochem J; 1985 Mar; 226(2):551-6. PubMed ID: 3994672 [TBL] [Abstract][Full Text] [Related]
9. Concentrations of long-chain acyl-acyl carrier proteins during fatty acid synthesis by chloroplasts isolated from pea (Pisum sativum), safflower (Carthamus tinctoris), and amaranthus (Amaranthus lividus) leaves. Roughan G; Nishida I Arch Biochem Biophys; 1990 Jan; 276(1):38-46. PubMed ID: 2297229 [TBL] [Abstract][Full Text] [Related]
10. alpha-Hydroxylation of newly synthesised fatty acids by a soluble fraction from germinating pea. Jordan BR; Harwood JL Biochim Biophys Acta; 1979 Apr; 573(1):218-21. PubMed ID: 454636 [TBL] [Abstract][Full Text] [Related]
11. Inhibition of plant fatty acid synthesis by nitroimidazoles. Jones AV; Harwood JL; Stratford MR; Stumpf PK Biochem J; 1981 Jul; 198(1):193-8. PubMed ID: 7325993 [TBL] [Abstract][Full Text] [Related]
12. Fatty acid metabolism in the microsomal fraction of developing rabbit brain. Carey EM; Parkin L Biochim Biophys Acta; 1975 Feb; 380(2):176-89. PubMed ID: 1120139 [TBL] [Abstract][Full Text] [Related]
13. Characterization of fatty acid elongase enzymes from germinating pea seeds. Barrett PB; Harwood JL Phytochemistry; 1998 Aug; 48(8):1295-304. PubMed ID: 9720312 [TBL] [Abstract][Full Text] [Related]
14. Stromal concentrations of coenzyme A and its esters are insufficient to account for rates of chloroplast fatty acid synthesis: evidence for substrate channelling within the chloroplast fatty acid synthase. Roughan PG Biochem J; 1997 Oct; 327 ( Pt 1)(Pt 1):267-73. PubMed ID: 9355762 [TBL] [Abstract][Full Text] [Related]
15. Effects of the selective herbicide fluazifop on fatty acid synthesis in pea (Pisum sativum) and barley (Hordeum vulgare). Walker KA; Ridley SM; Harwood JL Biochem J; 1988 Sep; 254(3):811-7. PubMed ID: 3196294 [TBL] [Abstract][Full Text] [Related]
16. [Activities of 3-hydroxyl-3-methylglutaryl-CoA reductase and acetyl-CoA carboxylase and the rate of mevalonic acid, squalene, sterol and fatty acid biosynthesis from [1-14C]acetyl-CoA and [2-14C]malonyl-CoA in rat liver: effects of Triton WR 1339, starvation and cholesterol diet]. Poliakova ED; Dizhe EB; Klimova TA; Denisenko TV; Vasil'eva LE Biokhimiia; 1981 Feb; 46(2):296-305. PubMed ID: 6113854 [TBL] [Abstract][Full Text] [Related]
17. Fat metabolism in higher plants. Production of short- and medium-chain acyl-acyl carrier protein by spinach stroma preparations treated with cerulenin. Packter NM; Stumpf PK Biochim Biophys Acta; 1975 Dec; 409(3):274-82. PubMed ID: 1203245 [TBL] [Abstract][Full Text] [Related]
18. Elongation of fatty acids by microsomal fractions from the brain of the developing rat. Brophy PJ; Vance DE Biochem J; 1975 Dec; 152(3):495-501. PubMed ID: 818998 [TBL] [Abstract][Full Text] [Related]
19. The biosynthesis of linoleate from oleoyl-CoA via oleoyl-phosphatidylcholine in microsomes of developing safflower seeds. Stymne S; Appelqvist LA Eur J Biochem; 1978 Oct; 90(2):223-9. PubMed ID: 710426 [TBL] [Abstract][Full Text] [Related]
20. Ricinoleic acid biosynthesis and triacylglycerol assembly in microsomal preparations from developing castor-bean (Ricinus communis) endosperm. Bafor M; Smith MA; Jonsson L; Stobart K; Stymne S Biochem J; 1991 Dec; 280 ( Pt 2)(Pt 2):507-14. PubMed ID: 1747126 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]