These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 7337852)

  • 1. Marine sediment and interstitial water: effects on bioavailability of cadmium to gills of the clam Protothaca staminea.
    Hardy JT; Schmidt RL; Apts CW
    Bull Environ Contam Toxicol; 1981 Dec; 27(6):798-805. PubMed ID: 7337852
    [No Abstract]   [Full Text] [Related]  

  • 2. Taurine and glycine in the gills of the clam Protothaca staminea exposed to chlorinated seawater.
    Roesijadi G
    Bull Environ Contam Toxicol; 1979 Jul; 22(4-5):543-7. PubMed ID: 39651
    [No Abstract]   [Full Text] [Related]  

  • 3. Variation of metallothioneins in gills of the clam Ruditapes decussatus from the Gulf of Gabès (Tunisia).
    Smaoui-Damak W; Hamza-Chaffai A; Bebianno MJ; Amiard JC
    Comp Biochem Physiol C Toxicol Pharmacol; 2004 Dec; 139(4):181-8. PubMed ID: 15683825
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioaccumulation kinetics and organ distribution of nickel in the marine clam (Protothaca staminea).
    Hardy JT; Roesijadi G
    Bull Environ Contam Toxicol; 1982 May; 28(5):566-72. PubMed ID: 7093557
    [No Abstract]   [Full Text] [Related]  

  • 5. Metal interactions within the kidney, gill, and digestive gland of the hard clam, Mercenaria mercenaria, following laboratory exposure to cadmium.
    Robinson WE; Ryan DK
    Arch Environ Contam Toxicol; 1986 Jan; 15(1):23-30. PubMed ID: 3947136
    [No Abstract]   [Full Text] [Related]  

  • 6. Metabolism of pyrene by two clam species, Mya arenaria and Protothaca staminea.
    Simpson CD; Cullen WR; He TY; Ikonomou M; Reimer KJ
    Chemosphere; 2002 Oct; 49(3):315-22. PubMed ID: 12363311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Involvement of metallothionein in cadmium accumulation and elimination in the clam Ruditapes decussata.
    Bebianno MJ; Serafim MA; Rita MF
    Bull Environ Contam Toxicol; 1994 Nov; 53(5):726-32. PubMed ID: 7833610
    [No Abstract]   [Full Text] [Related]  

  • 8. Assessment of metallothioneins in tissues of the clam Megapitaria squalida as biomarkers for environmental cadmium pollution from areas enriched in phosphorite.
    Escobedo-Fregoso C; Mendez-Rodriguez LC; Monsalvo-Spencer P; Llera-Herrera RA; Zenteno-Savin T; Acosta-Vargas B
    Arch Environ Contam Toxicol; 2010 Aug; 59(2):255-63. PubMed ID: 20162261
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzymatic transformation of PSP toxins in the littleneck clam (Protothaca staminea).
    Sullivan JJ; Iwaoka WT; Liston J
    Biochem Biophys Res Commun; 1983 Jul; 114(2):465-72. PubMed ID: 6882435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ potential use of metallothionein as a biomarker of cadmium contamination in Ruditapes decussatus.
    Smaoui-Damak W; Berthet B; Hamza-Chaffai A
    Ecotoxicol Environ Saf; 2009 Jul; 72(5):1489-98. PubMed ID: 19272647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uptake and release of cadmium in various organs of the common mussel, Mytilus edulis (L.).
    Everaarts JM
    Bull Environ Contam Toxicol; 1990 Oct; 45(4):560-7. PubMed ID: 2279118
    [No Abstract]   [Full Text] [Related]  

  • 12. Cadmium kinetics in freshwater clams. Uptake of cadmium by the excised gill of Anodonta anatina.
    Holwerda DA; de Knecht JA; Hemelraad J; Veenhof PR
    Bull Environ Contam Toxicol; 1989 Mar; 42(3):382-8. PubMed ID: 2706348
    [No Abstract]   [Full Text] [Related]  

  • 13. Kinetics of alanine uptake by the gills of the soft shelled clam Mya arenaria.
    Stewart MG; Bamford DR
    Comp Biochem Physiol A Comp Physiol; 1975 Sep; 52(1):67-74. PubMed ID: 240569
    [No Abstract]   [Full Text] [Related]  

  • 14. Impact of cadmium contamination and oxygenation levels on biochemical responses in the Asiatic clam Corbicula fluminea.
    Legeay A; Achard-Joris M; Baudrimont M; Massabuau JC; Bourdineaud JP
    Aquat Toxicol; 2005 Sep; 74(3):242-53. PubMed ID: 16040139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accumulation of cadmium and lead in the gills of Mytilus edulis: X-ray microanalysis and chemical analysis.
    Marshall AT; Talbot V
    Chem Biol Interact; 1979 Sep; 27(1):111-23. PubMed ID: 476851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Cadmium accumulation in tissues of the mussel Mytilus galloprovincialis].
    Skul'skiĭ IA; Pivovarova NB; Kulebakina LG
    Zh Evol Biokhim Fiziol; 1987; 23(3):281-6. PubMed ID: 3618014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of hypoxia in the gills of the Manila clam Ruditapes philippinarum using NMR-based metabolomics.
    Zhang Y; Wu H; Wei L; Xie Z; Guan B
    Mar Pollut Bull; 2017 Jan; 114(1):84-89. PubMed ID: 27587234
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heat flux, oxygen flux, and mitochondrial redox state as a function of oxygen availability and ciliary activity in excised gills of Mytilus edulis.
    Doeller JE; Kraus DW; Shick JM; Gnaiger E
    J Exp Zool; 1993 Jan; 265(1):1-8. PubMed ID: 8459228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Roles of regional hydrodynamic and trophic contamination in cadmium bioaccumulation by Pacific oysters in the Marennes-Oléron Bay (France).
    Strady E; Blanc G; Baudrimont M; Schäfer J; Robert S; Lafon V
    Chemosphere; 2011 Jun; 84(1):80-90. PubMed ID: 21421251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cadmium kinetics in freshwater clams (Unionidae) under field and laboratory conditions.
    Jenner HA; Hemelraad J; Marquenie JM; Noppert F
    Sci Total Environ; 1991 Oct; 108(3):205-14. PubMed ID: 1754876
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.