BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 7339506)

  • 1. Regional differences in cofactor saturation of glutamate decarboxylase (GAD) in discrete brain nuclei of the rat. Effect of repeated administration of haloperidol on GAD activity in the substantia nigra.
    Itoh M; Uchimura H
    Neurochem Res; 1981 Dec; 6(12):1283-9. PubMed ID: 7339506
    [No Abstract]   [Full Text] [Related]  

  • 2. Effect of haloperidol on glutamate decarboxylase activity in discrete brain areas of the rat.
    Itoh M
    Psychopharmacology (Berl); 1983; 79(2-3):169-72. PubMed ID: 6405424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of different doses of apomorphine on GAD activity in rat substantia nigra.
    Condorelli DF; Giammona G; Patti F; Nicoletti F; Rampello L; Reggio A; Matera M; Di Giorgio RM
    Ital J Neurol Sci; 1981 Aug; 2(3):303-6. PubMed ID: 7341553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Possible involvement of prolactin in sulpiride-induced changes in nigral and striatal GAD activity.
    Scapagnini U; Canonico PL; Patti F; Condorelli DF; Nicoletti F
    Ann Ist Super Sanita; 1982; 18(1):27-9. PubMed ID: 7171172
    [No Abstract]   [Full Text] [Related]  

  • 5. The diurnal variations of glutamic acid decarboxylase activity in some discrete nuclei of rat brain.
    Kawahara R; Hazama H; Kamase H; Takeshita H; Kunimoto N; Kayano M
    Folia Psychiatr Neurol Jpn; 1980; 34(4):473-9. PubMed ID: 7196368
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glutamate decarboxylase distribution in discrete motor nuclei in the cat brain.
    Nieoullon A; Dusticier N
    J Neurochem; 1981 Jul; 37(1):202-9. PubMed ID: 7252505
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distribution of glutamate decarboxylase in discrete brain nuclei.
    Tappaz ML; Brownstein MJ; Palkovits M
    Brain Res; 1976 May; 108(2):371-9. PubMed ID: 1276902
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of parathyroid hormone or haloperidol-induced catalepsy and nigral GAD activity.
    Nicoletti F; Clementi G; Patti F; Prato A; De Giorgio RM; Scapagnini U
    Eur J Pharmacol; 1983 Mar; 88(1):135-6. PubMed ID: 6682781
    [No Abstract]   [Full Text] [Related]  

  • 9. Comparative effects of estrogens and prolactin on nigral and striatal GAD activity.
    Nicoletti F; Patti F; Ferrara N; Canonico PL; Giammona G; Condorelli DF; Scapagnini U
    Brain Res; 1982 Jan; 232(1):238-41. PubMed ID: 7055706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glutamic acid decarboxylase (GAD) activity in the rat substantia nigra after discrete bilateral kainic acid-induced lesions of the caudate-putamen and globus pallidus: correlation with locomotor activity.
    Al-Shabibi UM; Davies JA
    Brain Res; 1981 Jun; 213(2):460-6. PubMed ID: 7248771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decrease of glutamate decarboxylase (GAD)-immunoreactive nerve terminals in the substantia nigra after kainic acid lesion of the striatum.
    Oertel WH; Schmechel DE; Brownstein MJ; Tappaz ML; Ransom DH; Kopin IJ
    J Histochem Cytochem; 1981 Aug; 29(8):977-80. PubMed ID: 7024401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Effects of different doses of apomorphine on the glutamate decarboxylase activity of the substantia nigra and the medial basal hypothalamus].
    Giammona G; Pattí F; Sambataro V; Reggio A; Rampello L; Di Giorgio RM; Maccagnano C; Condorelli DF; Nicoletti F
    Boll Soc Ital Biol Sper; 1981 Oct; 57(20):2074-9. PubMed ID: 7317201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cysteinesulfinate decarboxylase activity as an index of taurine-containing structures.
    Staines WA; Benjamin AM; McGeer EG
    J Neurosci Res; 1980; 5(6):555-62. PubMed ID: 7205993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distribution of choline acetyltransferase and glutamate decarboxylase within the substantia nigra and in other brain regions from control and Parkinsonian patients.
    Lloyd KG; Möhler H; Heitz P; Bartholini G
    J Neurochem; 1975 Dec; 25(6):789-95. PubMed ID: 1206397
    [No Abstract]   [Full Text] [Related]  

  • 15. The distribution and origin of glutamate decarboxylase and choline acetyltransferase in ventral pallidum and other basal forebrain regions.
    Walaas I; Fonnum F
    Brain Res; 1979 Nov; 177(2):325-36. PubMed ID: 497834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chronic administration of amphetamine increases glutamic acid decarboxylase activity in the rat substantia nigra.
    Pérez-de la Mora M; López-Quiroz D; Méndez-Franco J; Drucker-Colín R
    Neurosci Lett; 1990 Feb; 109(3):315-20. PubMed ID: 2330133
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of depolarization on cofactor regulation of glutamic acid decarboxylase in substantia nigra synaptosomes.
    Miller LP; Walters JR
    J Neurochem; 1979 Aug; 33(2):533-9. PubMed ID: 469543
    [No Abstract]   [Full Text] [Related]  

  • 18. Effect of discrete kainic acid-induced lesions of corpus caudatus and globus pallidus on glutamic acid decarboxylase of rat substantia nigra.
    Di Chiara G; Morelli M; Porceddu ML; Mulas M; Del Fiacco M
    Brain Res; 1980 May; 189(1):193-208. PubMed ID: 7363085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time course and localization of the effects of estrogen on glutamic acid decarboxylase activity.
    McGinnis MY; Gordon JH; Gorski RA
    J Neurochem; 1980 Apr; 34(4):785-92. PubMed ID: 7359131
    [No Abstract]   [Full Text] [Related]  

  • 20. Glutamate decarboxylase (GAD) and gamma-aminobutyric acid (GABA) in discrete nuclei of hypothalamus and substantia nigra.
    Tappaz ML; Brownstein MJ; Kopin IJ
    Brain Res; 1977 Apr; 125(1):109-21. PubMed ID: 856403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.