These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 7339646)

  • 21. The measurement of central noradrenergic activity in spontaneously hypertensive rats: a comparison of free 3,4-dihydroxyphenylethyleneglycol levels with FLA-63 induced noradrenaline depletion.
    Howes LG; Summers RJ; Rowe PR; Louis WJ
    J Hypertens; 1985 Jun; 3(3):237-42. PubMed ID: 4020130
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regional characteristics of stress-induced increases in brain noradrenaline release in rats.
    Tanaka M; Kohno Y; Nakagawa R; Ida Y; Takeda S; Nagasaki N; Noda Y
    Pharmacol Biochem Behav; 1983 Sep; 19(3):543-7. PubMed ID: 6634905
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Brain 3,4-dihydroxyphenylethyleneglycol levels are dependent on central noradrenergic neuron activity.
    Scatton B
    Life Sci; 1982 Aug; 31(5):495-504. PubMed ID: 7132563
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The biosynthesis of 3-methoxy-4-hydroxyphenylglycol sulphate by liver and brain.
    Wong KP
    J Neurochem; 1975 May; 24(5):1059-63. PubMed ID: 237978
    [No Abstract]   [Full Text] [Related]  

  • 25. Unchanged regional norepinephrine glycol metabolite levels in rat brain two months after amygdala kindling.
    Okazaki MM; Warsh JJ; Burnham WM
    Epilepsy Res; 1988; 2(2):72-8. PubMed ID: 3197689
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Relationship between hypothalamic noradrenergic neuronal activity and serum 3-methoxy-4-hydroxyphenylethylene glycol in the rat.
    Grunstein HS; Gleeson RM; Smythe GA
    Life Sci; 1986 Jul; 39(3):207-13. PubMed ID: 3736321
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of amphetamine, electrical stimulation and stress on endogenous MOPEG-SO4 levels in rat brain.
    Bareggi SR; Markey K; Paoletti R
    Pharmacol Res Commun; 1978 Jan; 10(1):65-73. PubMed ID: 643891
    [No Abstract]   [Full Text] [Related]  

  • 28. Evidence for the involvement of presynaptic alpha-2 adrenoceptors in the regulation of norepinephrine metabolism in the rat brain.
    Curet O; Dennis T; Scatton B
    J Pharmacol Exp Ther; 1987 Jan; 240(1):327-36. PubMed ID: 3027307
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Noradrenaline metabolism in the brain of rats with genetically determined hypertension (SHR)].
    Zukowska-Grójec Z
    Kardiol Pol; 1980; 23(10):881-91. PubMed ID: 7463938
    [No Abstract]   [Full Text] [Related]  

  • 30. Physiological control of brain norepinephrine synthesis by brain tyrosine concentration.
    Gibson CJ; Wurtman RJ
    Life Sci; 1978 Apr; 22(16):1399-405. PubMed ID: 672404
    [No Abstract]   [Full Text] [Related]  

  • 31. [Regional characteristics of noradrenaline turnover as reflected in the brain levels of MHPG-SO4].
    Kohno Y
    Nihon Yakurigaku Zasshi; 1983 Mar; 81(3):175-92. PubMed ID: 6345303
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Plasma dihydroxyphenylglycol (DHPG) in the in vivo assessment of human neuronal norepinephrine metabolism.
    Izzo JL; Thompson DA; Horwitz D
    Life Sci; 1985 Sep; 37(11):1033-8. PubMed ID: 4033349
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fengabine, a novel antidepressant GABAergic agent. II. Effect on cerebral noradrenergic, serotonergic and GABAergic transmission in the rat.
    Scatton B; Lloyd KG; Zivkovic B; Dennis T; Claustre Y; Dedek J; Arbilla S; Langer SZ; Bartholini G
    J Pharmacol Exp Ther; 1987 Apr; 241(1):251-7. PubMed ID: 3033204
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The neuronal and extraneuronal origins of plasma 3-methoxy-4-hydroxyphenylglycol in rats.
    Eisenhofer G; Pecorella W; Pacak K; Hooper D; Kopin IJ; Goldstein DS
    J Auton Nerv Syst; 1994 Dec; 50(1):93-107. PubMed ID: 7844319
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A time-dependent biphasic effect of an acute ethanol injection on 3-methoxy 4-hydroxyphenylethylene glycol sulfate in rat brain.
    Smith BR; Aragon CM; Amit Z
    Biochem Pharmacol; 1985 Apr; 34(8):1311-4. PubMed ID: 3994748
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Aldose reductase, a key enzyme in the oxidative deamination of norepinephrine in rats.
    Kawamura M; Eisenhofer G; Kopin IJ; Kador PF; Lee YS; Tsai JY; Fujisawa S; Lizak MJ; Sinz A; Sato S
    Biochem Pharmacol; 1999 Aug; 58(3):517-24. PubMed ID: 10424772
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Differential effects of yohimbine and phenoxybenzamine on norepinephrine metabolites in rat brain.
    Edwards DJ; Sorisio DA
    Res Commun Chem Pathol Pharmacol; 1988 Nov; 62(2):195-206. PubMed ID: 3251333
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cardiac 3,4-dihydroxyphenylethylene glycol (DHPG) and catecholamine levels in a rat model of left ventricular failure.
    Howes LG; Hodsman GP; Maccarrone C; Kohzuki M; Johnston CI
    J Cardiovasc Pharmacol; 1989 Feb; 13(2):348-52. PubMed ID: 2468969
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Acidic and neutral metabolites of norepinephrine: their metabolism and transport from brain.
    Meek JL; Neff NH
    J Pharmacol Exp Ther; 1972 Jun; 181(3):457-62. PubMed ID: 5033012
    [No Abstract]   [Full Text] [Related]  

  • 40. Cyclazocine and norepinephrine uptake, metabolism, and turnover in the rat brain.
    Russi GD
    J Pharm Sci; 1985 Jan; 74(1):97-9. PubMed ID: 3981430
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.