These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 7339866)

  • 1. Postischaemic hyperaemia studied with a transcutaneous oxygen electrode used at 33-37 degrees C.
    Ewald U; Rooth G; Tuvemo T
    Scand J Clin Lab Invest; 1981 Nov; 41(7):641-45. PubMed ID: 7339866
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of the transcutaneous oxygen method used at 37 degrees C for measurement of reactive hyperaemia in the skin.
    Ewald U
    Clin Physiol; 1984 Oct; 4(5):413-23. PubMed ID: 6541550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Early reduction of vascular reactivity in diabetic children detected by transcutaneous oxygen electrode.
    Ewald U; Tuvemo T; Rooth G
    Lancet; 1981 Jun; 1(8233):1287-8. PubMed ID: 6112606
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcutaneous oxygen pressure measured at two different electrode core temperatures in healthy volunteers and patients with arterial occlusive disease.
    Creutzig A; Dau D; Caspary L; Alexander K
    Int J Microcirc Clin Exp; 1987; 5(4):373-80. PubMed ID: 3557822
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reactive hyperaemia in skin of the human foot measured by laser Doppler flowmetry: effects of duration of ischaemia and local heating.
    Walmsley D; Wiles PG
    Int J Microcirc Clin Exp; 1990 Nov; 9(4):345-55. PubMed ID: 2279855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Skin reactive hyperemia recorded by a combined TcPO2 and laser Doppler sensor.
    Ewald U; Huch A; Huch R; Rooth G
    Adv Exp Med Biol; 1987; 220():231-4. PubMed ID: 2960137
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of the transcutaneous electrode on the variability of dermal oxygen tension changes.
    Spence VA; McCollum PT; McGregor IW; Sherwin SJ; Walker WF
    Clin Phys Physiol Meas; 1985 May; 6(2):139-45. PubMed ID: 4017444
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of histamine and PGE2-induced hyperaemia and oedema on respiratory metabolism in normal human forearm skin.
    Carnochan FM; Abbot NC; Beck JS; Spence VA; James PB
    Agents Actions; 1990 Mar; 29(3-4):292-8. PubMed ID: 2111083
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correlation of transcutaneous oxygen tension to blood flow in heated skin.
    Eickhoff JH; Jacobsen E
    Scand J Clin Lab Invest; 1980; 40(8):761-5. PubMed ID: 7280554
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of temperature on arterial and cutaneous pO2 in the rabbit.
    Silverman F; Young BK
    Gynecol Obstet Invest; 1983; 15(5):283-90. PubMed ID: 6852648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A transparent transcutaneous oxygen electrode for simultaneous studies of skin capillary morphology, flow dynamics and oxygenation.
    Huch A; Franzeck UK; Huch R; Bollinger A
    Int J Microcirc Clin Exp; 1983; 2(2):103-8. PubMed ID: 6678840
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of mechanical pressure and local stasis on transcutaneous monitoring of fetal oxygen tension.
    Fall O; Ek B; Nilsson BA; Rooth G
    Br J Obstet Gynaecol; 1980 Mar; 87(3):230-3. PubMed ID: 7387927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of sympathetic nerves on transcutaneous oxygen tension in normal and ischemic lower extremities.
    Rooke TW; Hollier LH; Osmundson PJ
    Angiology; 1987 May; 38(5):400-10. PubMed ID: 3592297
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of graded leg cycling on postischaemic forearm blood flow in healthy subjects.
    Charles M; Pichot V; Dauphinot V; Barthelemy JC; Denis C; Roche F; Costes F
    Clin Physiol Funct Imaging; 2008 Jan; 28(1):8-13. PubMed ID: 18005079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Blood flow rate, temperature, oxygen tension and consumption in the skin of adults measured by a heated microcathode oxygen electrode.
    Jaszczak P
    Dan Med Bull; 1988 Aug; 35(4):322-34. PubMed ID: 3048920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Is transcutaneous oxygen tension independent of variations in blood flow and in arterial blood pressure?
    Eickhoff JH; Jacobsen E
    Biotelem Patient Monit; 1982; 9(3):175-84. PubMed ID: 7159703
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Age-related changes in microvascular blood flow and transcutaneous oxygen tension under Basal and stimulated conditions.
    Ogrin R; Darzins P; Khalil Z
    J Gerontol A Biol Sci Med Sci; 2005 Feb; 60(2):200-6. PubMed ID: 15814863
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of diabetic neuropathy on skin microcirculation assessed by transcutaneous oxymetry.
    Caspary L; Abicht J; Creutzig A; Mitzkat HJ; Alexander K
    Vasa; 1995; 24(4):340-6. PubMed ID: 8533444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of arterial and venous pressures on transcutaneous oxygen tension.
    Eickhoff JH; Ishihara S; Jacobsen E
    Scand J Clin Lab Invest; 1980; 40(8):755-60. PubMed ID: 7280553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Examinations on the blood flow dependence of tcPO2 using the model of the "circulatory hyperbola".
    Steinacker JM; Spittelmeister W; Wodick R
    Adv Exp Med Biol; 1987; 220():263-8. PubMed ID: 2960140
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.