These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 7340813)

  • 21. Molecular analysis of Vibrio cholerae O1, O139, non-O1, and non-O139 strains: clonal relationships between clinical and environmental isolates.
    Singh DV; Matte MH; Matte GR; Jiang S; Sabeena F; Shukla BN; Sanyal SC; Huq A; Colwell RR
    Appl Environ Microbiol; 2001 Feb; 67(2):910-21. PubMed ID: 11157262
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fragment C of tetanus toxin antagonizes the neuromuscular blocking properties of native tetanus toxin.
    Simpson LL
    J Pharmacol Exp Ther; 1984 Mar; 228(3):600-4. PubMed ID: 6707911
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Molecular mechanisms of the effects of botulin in tetanus neurotoxins].
    Lutsenko VK
    Usp Sovrem Biol; 1981; 91(1):99-113. PubMed ID: 6267841
    [No Abstract]   [Full Text] [Related]  

  • 24. Antibodies against synthetic peptides of the B subunit of cholera toxin: crossreaction and neutralization of the toxin.
    Jacob CO; Sela M; Arnon R
    Proc Natl Acad Sci U S A; 1983 Dec; 80(24):7611-5. PubMed ID: 6584874
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Entrance of cholera enterotoxin subunits into cells.
    Tsuru S; Matsuguchi M; Ohtomo N; Zinnaka Y; Takeya K
    J Gen Microbiol; 1982 Mar; 128(3):497-502. PubMed ID: 7077299
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Binding of fluorescently labeled cholera toxin subunit B to glycolipids in the human submandibular gland and inhibition of binding by periodate oxidation and by galactose.
    Kirkeby S
    Biotech Histochem; 2016; 91(1):1-8. PubMed ID: 26472148
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Purification of tritium-labeled cholera toxin.
    Banwell JG; Hanke DW; Diedrich D
    Infect Immun; 1978 Aug; 21(2):613-8. PubMed ID: 689738
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Proteolytic fragmentation of tetanus toxin by subcellular fractions of JY, a B lymphoblastoid cell line.
    Reboul A; Arvieux J; Wright JF; Colomb MG
    Biochem J; 1991 Jul; 277 ( Pt 1)(Pt 1):47-51. PubMed ID: 1649603
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cellubrevin is a ubiquitous tetanus-toxin substrate homologous to a putative synaptic vesicle fusion protein.
    McMahon HT; Ushkaryov YA; Edelmann L; Link E; Binz T; Niemann H; Jahn R; Südhof TC
    Nature; 1993 Jul; 364(6435):346-9. PubMed ID: 8332193
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Studies on the time course and rate-limiting steps in the activation of adenylate cyclase in rat liver by cholera toxin.
    Fischer J; Kohler TR; Lipson LG; Flores J; Witkum PA; Sharp GW
    Biochem J; 1978 Jul; 173(1):59-64. PubMed ID: 210767
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Insulin-cholera toxin binding unit conjugate: a hybrid molecule with insulin biological activity and cholera toxin binding specificity.
    Roth RA; Maddux B
    J Cell Physiol; 1983 May; 115(2):151-8. PubMed ID: 6132923
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transport of bacterial toxins into target cells: pathways followed by cholera toxin and botulinum progenitor toxin.
    Fujinaga Y
    J Biochem; 2006 Aug; 140(2):155-60. PubMed ID: 16954533
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Conformational Shift in the Dissociated Cholera Toxin A1 Subunit Prevents Reassembly of the Cholera Holotoxin.
    Taylor M; Curtis D; Teter K
    Toxins (Basel); 2015 Jul; 7(7):2674-84. PubMed ID: 26266549
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stimulatory guanine nucleotide binding protein in pig epidermis: transient increase of the 45KDA cholera toxin substrate (Gs alpha) in the tape stripping-induced hyperproliferative state.
    Tsutsui M; Tamura T; Takahashi H; Hashimoto Y; Iizuka H
    Epithelial Cell Biol; 1994; 3(4):161-7. PubMed ID: 7550608
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Carbohydrate binding specificities and crystal structure of the cholera toxin-like B-subunit from Citrobacter freundii.
    Jansson L; Angström J; Lebens M; Imberty A; Varrot A; Teneberg S
    Biochimie; 2010 May; 92(5):482-90. PubMed ID: 20171259
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The combined use of analytical tools for exploring tetanus toxin and tetanus toxoid structures.
    Bayart C; Peronin S; Jean E; Paladino J; Talaga P; Borgne ML
    J Chromatogr B Analyt Technol Biomed Life Sci; 2017 Jun; 1054():80-92. PubMed ID: 28448854
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Recent advances in the molecular mechanism of action of bacterial toxins, in particular of diphtheria, cholera, coli, botulinum and shigella toxins as well as tetanospasmin and the toxins of staphylococcus aureus].
    Kolb E
    Z Gesamte Inn Med; 1984 Mar; 39(6):85-92. PubMed ID: 6375175
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of the cholera toxin receptor on Balb/c 3T3 cells as a ganglioside similar to, or identical with, ganglioside GM1. No evidence for galactoproteins with receptor activity.
    Critchley DR; Streuli CH; Kellie S; Ansell S; Patel B
    Biochem J; 1982 Apr; 204(1):209-19. PubMed ID: 7052064
    [TBL] [Abstract][Full Text] [Related]  

  • 39. On the mode of action of tetanus toxin in rabbit. I. Distribution of tetanus toxin in vivo and development of paralytic signs under some conditions.
    Miyasaki S; Okada K; Muto S; Iokazu T; Matsui M
    Jpn J Exp Med; 1967 Jun; 37(3):217-25. PubMed ID: 5300814
    [No Abstract]   [Full Text] [Related]  

  • 40. A review of the molecular structure of tetanus toxin.
    Robinson JP; Hash JH
    Mol Cell Biochem; 1982 Oct; 48(1):33-44. PubMed ID: 7177108
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.