BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 7341229)

  • 1. Reactivity of the thiol group in human and bovine albumin at pH 3--9, as measured by exchange with 2,2'-dithiodipyridine.
    Pedersen AO; Jacobsen J
    Eur J Biochem; 1980 May; 106(1):291-5. PubMed ID: 7341229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The thiol group of bovine serum albumin. High reactivity at acidic pH as measured by the reaction with 2,2'-dipyridyl disulphide.
    Svenson A; Carlsson J
    Biochim Biophys Acta; 1975 Aug; 400(2):433-8. PubMed ID: 240419
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation of cathepsins B and H by covalent chromatography and characterization of their catalytic sites by reaction with a thiol-specific two-protonic-state reactivity probe. Kinetic study of cathepsins B and H extending into alkaline media and a rapid spectroscopic titration of cathepsin H at pH 3-4.
    Willenbrock F; Brocklehurst K
    Biochem J; 1985 Apr; 227(2):511-9. PubMed ID: 4004778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reactivities of neutral and cationic forms of 2,2'-dipyridyl disulphide towards thiolate anions. Detection of differences between the active centres of actinidin, papain and ficin by a three-protonic-state reactivity probe.
    Brocklehurst K; Stuchbury T; Malthouse JP
    Biochem J; 1979 Nov; 183(2):233-8. PubMed ID: 43130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reactions of L-ergothioneine and some other aminothiones with2,2'-and 4,4'-dipyridyl disulphides and of L-ergothioneine with iodoacetamide. 2-Mercaptoimidazoles, 2- and 4-thiopyridones, thiourea and thioacetamide as highly reactive neutral sulphur nucleophils.
    Carlsson J; Kierstan MP; Brocklehurst K
    Biochem J; 1974 Apr; 139(1):221-35. PubMed ID: 4463944
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence that binding to the s2-subsite of papain may be coupled with catalytically relevant structural change involving the cysteine-25-histidine-159 diad. Kinetics of the reaction of papain with a two-protonic-state reactivity probe containing a hydrophobic side chain.
    Brocklehurst K; Malthouse JP; Shipton M
    Biochem J; 1979 Nov; 183(2):223-31. PubMed ID: 43129
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The thiol groups of the Folch-Pi protein from bovine white matter. Exposure, reactivity and significance.
    Vacher M; Waks M; Nicot C
    Biochem J; 1984 Feb; 218(1):197-202. PubMed ID: 6201162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chymopapain A. Purification and investigation by covalent chromatography and characterization by two-protonic-state reactivity-probe kinetics, steady-state kinetics and resonance Raman spectroscopy of some dithioacyl derivatives.
    Baines BS; Brocklehurst K; Carey PR; Jarvis M; Salih E; Storer AC
    Biochem J; 1986 Jan; 233(1):119-29. PubMed ID: 3513753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A kinetic method for the study of solvent environments of thiol groups in proteins involving the use of a pair of isomeric reactivity probes and a differential solvent effect. Investigation of the active centre of ficin by using 2,2'- and 4,4'- dipyridyl disulphides as reactivity probes.
    Malthouse JP; Brocklehurst K
    Biochem J; 1980 Jan; 185(1):217-22. PubMed ID: 6990917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of papaya peptidase A as a cysteine proteinase of Carica papaya L. with active-centre properties that differ from those of papain by using 2,2'-dipyridyl disulphide and 4-chloro-7-nitrobenzofurazan as reactivity probes. Use of two-protonic-state electrophiles in the identification of catalytic-site thiol groups.
    Baines BS; Brocklehurst K
    Biochem J; 1982 Jul; 205(1):205-11. PubMed ID: 6751321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation of fully active ficin from Ficus glabrata by covalent chromatography and characterization of its active centre by using 2,2'-depyridyl disulphide as a reactivity probe.
    Malthouse JP; Brocklehurst K
    Biochem J; 1976 Nov; 159(2):221-34. PubMed ID: 11777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of interactive thiol ionizations in bovine serum albumin, glutathione, and other thiols by potentiometric difference titration.
    Lewis SD; Misra DC; Shafer JA
    Biochemistry; 1980 Dec; 19(26):6129-37. PubMed ID: 7008829
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the papain active centre by using two-protonic-state electrophiles as reactivity probes. Evidence for nucleophilic reactivity in the un-interrupted cysteine-25-histidine-159 interactive system.
    Shipton M; Brochlehurst K
    Biochem J; 1978 May; 171(2):385-401. PubMed ID: 26335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reactions of papain and of low-molecular-weight thiols with some aromatic disulphides. 2,2'-Dipyridyl disulphide as a convenient active-site titrant for papain even in the presence of other thiols.
    Brocklehurst K; Little G
    Biochem J; 1973 May; 133(1):67-80. PubMed ID: 4721623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A procedure for the determination of monothiols in the presence of dithiothreitol--an improved assay for the reduction of disulfides.
    Le M; Means GE
    Anal Biochem; 1995 Aug; 229(2):264-71. PubMed ID: 7485981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Natural structural variation in enzymes as a tool in the study of mechanism exemplified by a comparison of the catalytic-site structure and characteristics of cathepsin B and papain. pH-dependent kinetics of the reactions of cathepsin B from bovine spleen and from rat liver with a thiol-specific two-protonic-state probe (2,2'-dipyridyl disulphide) and with a specific synthetic substrate (N-alpha-benzyloxycarbonyl-L-arginyl-L-arginine 2-naphthylamide).
    Willenbrock F; Brocklehurst K
    Biochem J; 1984 Sep; 222(3):805-14. PubMed ID: 6534384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reactivity of the essential thiol of Klebsiella aerogenes urease. Effect of pH and ligands on thiol modification.
    Todd MJ; Hausinger RP
    J Biol Chem; 1991 Jun; 266(16):10260-7. PubMed ID: 2037578
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A structurally driven analysis of thiol reactivity in mammalian albumins.
    Spiga O; Summa D; Cirri S; Bernini A; Venditti V; De Chiara M; Priora R; Frosali S; Margaritis A; Di Giuseppe D; Di Simplicio P; Niccolai N
    Biopolymers; 2011 Apr; 95(4):278-85. PubMed ID: 21280023
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of buried charged groups on cysteine thiol ionization and reactivity in Escherichia coli thioredoxin: structural and functional characterization of mutants of Asp 26 and Lys 57.
    Dyson HJ; Jeng MF; Tennant LL; Slaby I; Lindell M; Cui DS; Kuprin S; Holmgren A
    Biochemistry; 1997 Mar; 36(9):2622-36. PubMed ID: 9054569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly ordered molten globule-like state of ovalbumin at acidic pH: native-like fragmentation by protease and selective modification of Cys367 with dithiodipyridine.
    Tatsumi E; Hirose M
    J Biochem; 1997 Aug; 122(2):300-8. PubMed ID: 9378706
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.