These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

51 related articles for article (PubMed ID: 7341406)

  • 1. Conformational studies on 3'-nucleotides: significance of the flexibility of nucleotides.
    Rao SN; Sasisekharan V
    Indian J Biochem Biophys; 1981 Oct; 18(5):303-10. PubMed ID: 7341406
    [No Abstract]   [Full Text] [Related]  

  • 2. [Radiocrystallographic study confirms the existance of a conformation predicted for dinucleotides by calcuation of conformational energy].
    Kerckx J; De Coen JL
    Arch Int Physiol Biochim; 1972 Jan; 80(1):194-5. PubMed ID: 4111310
    [No Abstract]   [Full Text] [Related]  

  • 3. Conformational characteristics of mixed sugar puckered deoxytetranucleoside triphosphate d-GpCpGpC from energy minimization studies.
    Anukanth A; Ponnuswamy PK
    J Biomol Struct Dyn; 1989 Feb; 6(4):801-14. PubMed ID: 2619941
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The conformation of single-strand polynucleotides in solution: sedimentation studies of apurinic acid.
    Achter EK; Felsenfeld G
    Biopolymers; 1971; 10(9):1625-34. PubMed ID: 5126129
    [No Abstract]   [Full Text] [Related]  

  • 5. Conformational studies on polynucleotide chains. I. Hartree-Fock energies and description of nonbonded interactions with Lennard-Jones potentials.
    Matsuoka O; Tosi C; Clementi E
    Biopolymers; 1978 Jan; 17(1):33-49. PubMed ID: 623883
    [No Abstract]   [Full Text] [Related]  

  • 6. Conformational studies on polynucleotide chains. II. Analysis of steric interactions and derivation of potential functions for internal rotations.
    Tosi C; Clementi E; Matsuoka O
    Biopolymers; 1978 Jan; 17(1):51-66. PubMed ID: 623884
    [No Abstract]   [Full Text] [Related]  

  • 7. Sequence-dependent DNA structure: dinucleotide conformational maps.
    Packer MJ; Dauncey MP; Hunter CA
    J Mol Biol; 2000 Jan; 295(1):71-83. PubMed ID: 10623509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Translocation of structured polynucleotides through nanopores.
    Gerland U; Bundschuh R; Hwa T
    Phys Biol; 2004 Jun; 1(1-2):19-26. PubMed ID: 16204818
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermodynamics of DNA-RNA heteroduplex formation: effects of locked nucleic acid nucleotides incorporated into the DNA strand.
    Kaur H; Wengel J; Maiti S
    Biochemistry; 2008 Jan; 47(4):1218-27. PubMed ID: 18171024
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformational structure of polynucleotides around the O-P bonds: refined parameters for CPF calculations.
    Govil G
    Biopolymers; 1976 Nov; 15(11):2303-7. PubMed ID: 990414
    [No Abstract]   [Full Text] [Related]  

  • 11. Conformational dependence of the Raman scattering intensities from polynucleotides. 3. Order-disorder changes in helical structures.
    Small EW; Peticolas WL
    Biopolymers; 1971; 10(8):1377-418. PubMed ID: 5094578
    [No Abstract]   [Full Text] [Related]  

  • 12. Conformational studies on pyrimidine 5'-monophosphates and 3',5'-diphosphates. Effect of the phosphate groups on the backbone conformation of polynucleotides.
    Yathindra N; Sundaralingam M
    Biopolymers; 1973; 12(10):2261-77. PubMed ID: 4757323
    [No Abstract]   [Full Text] [Related]  

  • 13. Sequence-dependent DNA structure: tetranucleotide conformational maps.
    Packer MJ; Dauncey MP; Hunter CA
    J Mol Biol; 2000 Jan; 295(1):85-103. PubMed ID: 10623510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3' terminal nucleotides determine thermodynamic stabilities of mismatches at the ends of RNA helices.
    Clanton-Arrowood K; McGurk J; Schroeder SJ
    Biochemistry; 2008 Dec; 47(50):13418-27. PubMed ID: 19053257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectroscopic and thermodynamic studies of DNA duplexes containing alpha-anomeric C, A, and G nucleotides and polarity reversals: coexistence of localized parallel and antiparallel DNA.
    Aramini JM; van de Sande JH; Germann MW
    Biochemistry; 1997 Aug; 36(32):9715-25. PubMed ID: 9245403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Collective variable modelling of nucleic acids.
    Lafontaine I; Lavery R
    Curr Opin Struct Biol; 1999 Apr; 9(2):170-6. PubMed ID: 10322207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ab initio conformational analysis of nucleic acid components: intrinsic energetic contributions to nucleic acid structure and dynamics.
    Foloppe N; Nilsson L; MacKerell AD
    Biopolymers; 2001-2002; 61(1):61-76. PubMed ID: 11891629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insight into the intrinsic flexibility of the SL1 stem-loop from genomic RNA of HIV-1 as probed by molecular dynamics simulation.
    Mazier S; Genest D
    Biopolymers; 2008 Mar; 89(3):187-96. PubMed ID: 18008323
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of helix morphology on co-operative polyamide backbone conformational flexibility in peptide nucleic acid complexes.
    Topham CM; Smith JC
    J Mol Biol; 1999 Oct; 292(5):1017-38. PubMed ID: 10512700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PROSIT: pseudo-rotational online service and interactive tool, applied to a conformational survey of nucleosides and nucleotides.
    Sun G; Voigt JH; Filippov IV; Marquez VE; Nicklaus MC
    J Chem Inf Comput Sci; 2004; 44(5):1752-62. PubMed ID: 15446834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.