These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 7341636)
1. The influence of benserazide on changes in monoamine oxidase activity in some rat tissues following treatment with L-DOPA. Callingham BA; Lyles GA J Auton Pharmacol; 1980 Nov; 1(1):9-16. PubMed ID: 7341636 [TBL] [Abstract][Full Text] [Related]
2. In vitro and in vivo inhibition by benserazide of clorgyline-resistant amine oxidases in rat cardiovascular tissues. Lyles GA; Callingham BA Biochem Pharmacol; 1982 Apr; 31(7):1417-24. PubMed ID: 7092930 [TBL] [Abstract][Full Text] [Related]
3. Characteristics and specificity of phenelzine and benserazide as inhibitors of benzylamine oxidase and monoamine oxidase. Andree TH; Clarke DE Biochem Pharmacol; 1982 Mar; 31(5):825-30. PubMed ID: 7082351 [TBL] [Abstract][Full Text] [Related]
4. Commonly used L-amino acid decarboxylase inhibitors block monoamine oxidase activity in the rat. Treseder SA; Rose S; Summo L; Jenner P J Neural Transm (Vienna); 2003 Mar; 110(3):229-38. PubMed ID: 12658372 [TBL] [Abstract][Full Text] [Related]
5. Effect of type A and B monoamine oxidase selective inhibition by Ro 41-1049 and Ro 19-6327 on dopamine outflow in rat kidney slices. Pestana M; Soares-da-Silva P Br J Pharmacol; 1994 Dec; 113(4):1269-74. PubMed ID: 7889283 [TBL] [Abstract][Full Text] [Related]
6. [Mechanisms of regulating monoamine oxidase activity in different brain regions]. Petrenko SV; Balakleevskiĭ AI Vopr Med Khim; 1980; 26(2):264-70. PubMed ID: 7456358 [TBL] [Abstract][Full Text] [Related]
7. Effect of L-dopa administration on islet monoamine oxidase activity and glucose-induced insulin release in the mouse. Lundquist I; Panagiotidis G; Stenström A Pancreas; 1991 Sep; 6(5):522-7. PubMed ID: 1946308 [TBL] [Abstract][Full Text] [Related]
8. Coadministration of β-asarone and levodopa increases dopamine in rat brain by accelerating transformation of levodopa: a different mechanism from Madopar. Huang L; Deng M; Zhang S; Fang Y; Li L Clin Exp Pharmacol Physiol; 2014 Sep; 41(9):685-90. PubMed ID: 24910244 [TBL] [Abstract][Full Text] [Related]
9. Enzyme properties of monoamine oxidase in the frontal cortex and liver of the gerbil (Meriones unguiculatus). Morioka D; Kanda Y; Izumi J; Hashimoto M; Inagaki M; Kiuchi Y; Oguchi K Comp Biochem Physiol B; 1993; 105(3-4):585-90. PubMed ID: 8365114 [TBL] [Abstract][Full Text] [Related]
10. Cardiovascular responses to combined treatment with selective monoamine oxidase type B inhibitors and L-DOPA in the rat. Finberg JP; Gross A; Bar-Am O; Friedman R; Loboda Y; Youdim MB Br J Pharmacol; 2006 Nov; 149(6):647-56. PubMed ID: 17016505 [TBL] [Abstract][Full Text] [Related]
11. Differences between monoamine oxidase concentrations in striatum and forebrain of aged and young rats. Arai Y; Kinemuchi H J Neural Transm; 1988; 72(2):99-105. PubMed ID: 3385427 [TBL] [Abstract][Full Text] [Related]
12. Role of monoamine oxidase A and B in the deamination of newly-formed dopamine in the rat kidney. Fernandes MH; Soares-da-Silva P J Neural Transm Suppl; 1990; 32():155-9. PubMed ID: 2089083 [TBL] [Abstract][Full Text] [Related]
13. Differential substrate specificity of monoamine oxidase in the rat heart and renal cortex. Guimarães JT; Vindis C; Soares-da-Silva P; Parini A Life Sci; 2003 Jul; 73(8):955-67. PubMed ID: 12818349 [TBL] [Abstract][Full Text] [Related]
14. Preferential deamination of dopamine by an A type monoamine oxidase in rat brain. Waldmeier PC; Delini-Stula A; Maître L Naunyn Schmiedebergs Arch Pharmacol; 1976; 292(1):9-14. PubMed ID: 934359 [TBL] [Abstract][Full Text] [Related]
15. SL25.1131 [3(S),3a(S)-3-methoxymethyl-7-[4,4,4-trifluorobutoxy]-3,3a,4,5-tetrahydro-1,3-oxazolo[3,4-a]quinolin-1-one], a new, reversible, and mixed inhibitor of monoamine oxidase-A and monoamine oxidase-B: biochemical and behavioral profile. Aubin N; Barneoud P; Carter C; Caille D; Sontag N; Marc C; Lolivier J; Gardes A; Perron C; Le Kim A; Charieras T; Pandini M; Burnier P; Puech F; Jegham S; George P; Scatton B; Curet O J Pharmacol Exp Ther; 2004 Sep; 310(3):1171-82. PubMed ID: 15178694 [TBL] [Abstract][Full Text] [Related]
16. The activity of MAO A and B in rat renal cells and tubules. Guimarães JT; Soares-da-Silva P Life Sci; 1998; 62(8):727-37. PubMed ID: 9489509 [TBL] [Abstract][Full Text] [Related]
17. β-asarone and levodopa coadministration increases striatal levels of dopamine and levodopa and improves behavioral competence in Parkinson's rat by enhancing dopa decarboxylase activity. Huang L; Deng M; Zhang S; Lu S; Gui X; Fang Y Biomed Pharmacother; 2017 Oct; 94():666-678. PubMed ID: 28787702 [TBL] [Abstract][Full Text] [Related]
18. Monoamine oxidase inhibitors: nature of their interaction with rabbit pancreatic islets to alter insluin secretion. Feldman JM; Chapman B Diabetologia; 1975 Dec; 11(6):487-94. PubMed ID: 1107123 [TBL] [Abstract][Full Text] [Related]
19. Monoamine oxidase activities of dissociated cell fractions from rat ventricular muscle. Lyles GA; McAuslane JA; Fitzpatrick CM Biochem Pharmacol; 1984 Aug; 33(16):2569-74. PubMed ID: 6466372 [TBL] [Abstract][Full Text] [Related]
20. Locomotor response to L-DOPA in reserpine-treated rats following central inhibition of aromatic L-amino acid decarboxylase: further evidence for non-dopaminergic actions of L-DOPA and its metabolites. Alachkar A; Brotchie JM; Jones OT Neurosci Res; 2010 Sep; 68(1):44-50. PubMed ID: 20542064 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]