These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
74 related articles for article (PubMed ID: 7341867)
1. First passage time for a supercritical Galton-Watson process restricted to the non-extinction set. Gadag VG J Theor Biol; 1981 Dec; 93(3):585-9. PubMed ID: 7341867 [No Abstract] [Full Text] [Related]
2. A condition for the extinction of a branching process with an absorbing lower barrier. Schuh HJ J Math Biol; 1976 Nov; 3(3-4):271-87. PubMed ID: 1022834 [TBL] [Abstract][Full Text] [Related]
3. Population growth and the multi-type Galton-Watson process. Seneta E Nature; 1970 Feb; 225(5234):766. PubMed ID: 5412787 [No Abstract] [Full Text] [Related]
4. Optimization and phenotype allocation. Jost J; Wang Y Bull Math Biol; 2014 Jan; 76(1):184-200. PubMed ID: 24233909 [TBL] [Abstract][Full Text] [Related]
5. Asymptotic rates of growth of the extinction probability of a mutant gene. Hoppe FM J Math Biol; 1992; 30(6):547-66. PubMed ID: 1640178 [TBL] [Abstract][Full Text] [Related]
6. Genetic drift in populations governed by a Galton-Watson branching process. Burden CJ; Simon H Theor Popul Biol; 2016 Jun; 109():63-74. PubMed ID: 27018000 [TBL] [Abstract][Full Text] [Related]
7. A reconsideration of Galton's problem (using a two-sex population). Hull DM Theor Popul Biol; 1998 Oct; 54(2):105-16. PubMed ID: 9733653 [TBL] [Abstract][Full Text] [Related]
8. Coalescence in the diffusion limit of a Bienaymé-Galton-Watson branching process. Burden CJ; Soewongsono AC Theor Popul Biol; 2019 Dec; 130():50-59. PubMed ID: 31585138 [TBL] [Abstract][Full Text] [Related]
9. The multi-type Galton-Watson process in a genetical context. Pollard JH Biometrics; 1968 Mar; 24(1):147-58. PubMed ID: 5642401 [No Abstract] [Full Text] [Related]
10. The survival probability of a mutant in a multidimensional population. Hoppe FM J Math Biol; 1992; 30(6):567-75. PubMed ID: 1640179 [TBL] [Abstract][Full Text] [Related]
11. Escape regimes of biased random walks on Galton-Watson trees. Bowditch A Probab Theory Relat Fields; 2018; 170(3):685-768. PubMed ID: 31258234 [TBL] [Abstract][Full Text] [Related]
12. Simple stochastic theory of stem cell differentiation is not simultaneously consistent with crypt extinction probability and the expansion of mutated clones. Bjerknes M J Theor Biol; 1994 Jun; 168(4):349-65. PubMed ID: 8072296 [TBL] [Abstract][Full Text] [Related]
13. The bisexual branching process with population-size dependent mating as a mathematical model to describe phenomena concerning to inhabit or re-inhabit environments with animal species. Mota M; del Puerto I; Ramos A Math Biosci; 2007 Mar; 206(1):120-7. PubMed ID: 16197966 [TBL] [Abstract][Full Text] [Related]
15. A Stochastic Tick-Borne Disease Model: Exploring the Probability of Pathogen Persistence. Maliyoni M; Chirove F; Gaff HD; Govinder KS Bull Math Biol; 2017 Sep; 79(9):1999-2021. PubMed ID: 28707219 [TBL] [Abstract][Full Text] [Related]
16. First passage time problem for a drifted Ornstein-Uhlenbeck process. Madec Y; Japhet C Math Biosci; 2004 Jun; 189(2):131-40. PubMed ID: 15094316 [TBL] [Abstract][Full Text] [Related]
17. Mutation in populations governed by a Galton-Watson branching process. Burden CJ; Wei Y Theor Popul Biol; 2018 Mar; 120():52-61. PubMed ID: 29233675 [TBL] [Abstract][Full Text] [Related]
18. Analysis of a growth model inspired by Gompertz and Korf laws, and an analogous birth-death process. Di Crescenzo A; Spina S Math Biosci; 2016 Dec; 282():121-134. PubMed ID: 27777048 [TBL] [Abstract][Full Text] [Related]
19. Estimation for an epidemic model. Becker N Biometrics; 1976 Dec; 32(4):769-77. PubMed ID: 1009226 [TBL] [Abstract][Full Text] [Related]
20. Reduction of supercritical multiregional stochastic models with fast migration. Rincón A; Alonso JA; Sanz L Acta Biotheor; 2009 Dec; 57(4):479-500. PubMed ID: 19809880 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]