These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 734250)

  • 1. Dead space and tidal volume of the giraffe compared with some other mammals.
    Hugh-Jones P; Barter CE; Hime JM; Rusbridge MM
    Respir Physiol; 1978 Oct; 35(1):53-8. PubMed ID: 734250
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Respiration and metabolism in the giraffe.
    Langman VA; Bamford OS; Maloiy GM
    Respir Physiol; 1982 Nov; 50(2):141-52. PubMed ID: 7156526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time and volume dependence of dead space in healthy and surfactant-depleted rat lungs during spontaneous breathing and mechanical ventilation.
    Dassow C; Schwenninger D; Runck H; Guttmann J
    J Appl Physiol (1985); 2013 Nov; 115(9):1268-74. PubMed ID: 23950167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Dependence of the anatomical dead space on the tidal volume and on the endexpiratory lung volume: dynamic behaviour and stabilization of the bronchiolar tone (author's transl)].
    Barnikol WK; Diether K
    Respiration; 1980; 39(1):8-9. PubMed ID: 7384655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of passive humidifier dead space on respiratory variables in paralyzed and spontaneously breathing patients.
    Campbell RS; Davis K; Johannigman JA; Branson RD
    Respir Care; 2000 Mar; 45(3):306-12. PubMed ID: 10771799
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of inspiratory flow rate on the efficiency of carbon dioxide removal at tidal volumes below instrumental dead space.
    Hurley EH; Keszler M
    Arch Dis Child Fetal Neonatal Ed; 2017 Mar; 102(2):F126-F130. PubMed ID: 27515984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon dioxide clearance during high frequency jet ventilation. Effect of deadspace in a lung model.
    Mortimer AJ; Bourgain JL; Uppington J; Sykes MK
    Br J Anaesth; 1986 Dec; 58(12):1404-13. PubMed ID: 3098268
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tidal volume dead-space relationship during high-frequency ventilation.
    Whitwam JG; Chakrabarti MK; Gordon G
    Lancet; 1983 Dec; 2(8363):1360. PubMed ID: 6139687
    [No Abstract]   [Full Text] [Related]  

  • 9. A graphic approach to assessing interrelationships among minute ventilation, arterial carbon dioxide tension, and ratio of physiologic dead space to tidal volume in patients on respirators.
    Selecky PA; Wasserman K; Klein M; Ziment I
    Am Rev Respir Dis; 1978 Jan; 117(1):181-4. PubMed ID: 619719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dead space ventilation in normal children and children with obstructive airways diease.
    Kerr AA
    Thorax; 1976 Feb; 31(1):63-9. PubMed ID: 1257940
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alterations in ventilatory pattern and ratio of dead-space to tidal volume.
    Baker RW; Burki NK
    Chest; 1987 Dec; 92(6):1013-7. PubMed ID: 3119296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiological dead space during high-frequency ventilation in dogs.
    Weinmann GG; Mitzner W; Permutt S
    J Appl Physiol Respir Environ Exerc Physiol; 1984 Sep; 57(3):881-7. PubMed ID: 6490472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An assessment of dead space in pulmonary ventilation of the toad Bufo schneideri.
    Fernandes MS; Giusti H; Glass ML
    Comp Biochem Physiol A Mol Integr Physiol; 2005 Dec; 142(4):446-50. PubMed ID: 16257551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tidal volume and frequency dependence of carbon dioxide elimination by high-frequency ventilation.
    Rossing TH; Slutsky AS; Lehr JL; Drinker PA; Kamm R; Drazen JM
    N Engl J Med; 1981 Dec; 305(23):1375-9. PubMed ID: 6795503
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measuring rebreathing in spontaneous ventilation. A new lung model.
    Cook LB; Watt S; Peachey G; Chakrabarti MK
    Anaesthesia; 1996 Mar; 51(3):241-6. PubMed ID: 8712324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of increased apparatus dead space and tidal volumes on carbon dioxide elimination and oxygen saturations in a low-flow anesthesia system.
    Enekvist BJ; Luttropp HH; Johansson A
    J Clin Anesth; 2008 May; 20(3):170-4. PubMed ID: 18502358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomechanics of the giraffe larynx and trachea.
    Harrison DF
    Acta Otolaryngol; 1980; 89(3-4):258-64. PubMed ID: 7395497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ventilatory response to increased dead spaces in the first week of life.
    Stokes GM; Milner AD; Wilson AJ; Morgan DB; Carman PG; Oliver MR
    Pediatr Pulmonol; 1986; 2(2):89-93. PubMed ID: 3086826
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiological dead space & arterial to end-tidal CO2 difference under controlled normocapnic ventilation in young anaesthetised subjects.
    Puri GD; Venkataraman RK; Singh H; Jindal SK
    Indian J Med Res; 1991 Feb; 94():41-6. PubMed ID: 1906429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurement of dead space in subjects under general anesthesia using standard anesthesia equipment.
    Badal JJ; Chen KJ; Loeb RG
    Anesth Analg; 2011 Feb; 112(2):375-7. PubMed ID: 21212257
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.