These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 7342686)

  • 41. Lactational exposure and neonatal kinetics of methylmercury and inorganic mercury in mice.
    Sundberg J; Jönsson S; Karlsson MO; Oskarsson A
    Toxicol Appl Pharmacol; 1999 Jan; 154(2):160-9. PubMed ID: 9925800
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Altered intrarenal accumulation of mercury in uninephrectomized rats treated with methylmercury chloride.
    Zalups RK; Barfuss DW; Kostyniak PJ
    Toxicol Appl Pharmacol; 1992 Aug; 115(2):174-82. PubMed ID: 1641852
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The role of intestinal microflora in the formation of the methylthio adduct metabolites of paracetamol. Studies in neomycin-pretreated and germ-free mice.
    Mikov M; Caldwell J; Dolphin CT; Smith RL
    Biochem Pharmacol; 1988 Apr; 37(8):1445-9. PubMed ID: 3358777
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cinnabar is not converted into methylmercury by human intestinal bacteria.
    Zhou X; Wang L; Sun X; Yang X; Chen C; Wang Q; Yang X
    J Ethnopharmacol; 2011 Apr; 135(1):110-5. PubMed ID: 21382464
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The degree of methylation and organ distribution of mercury in some birds of prey in Norway.
    Norheim G; Frøslie A
    Acta Pharmacol Toxicol (Copenh); 1978 Sep; 43(3):196-204. PubMed ID: 707133
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Metabolic models for methyl and inorganic mercury.
    Bernard SR; Purdue P
    Health Phys; 1984 Mar; 46(3):695-9. PubMed ID: 6698798
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Thimerosal distribution and metabolism in neonatal mice: comparison with methyl mercury.
    Zareba G; Cernichiari E; Hojo R; Nitt SM; Weiss B; Mumtaz MM; Jones DE; Clarkson TW
    J Appl Toxicol; 2007; 27(5):511-8. PubMed ID: 17582588
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The effect of interaction between subsequent doses of MeHgCl or HgCl2 on the biliary excretion of mercury from each individual dose.
    Cikrt M; Magos L; Snowden RT
    Toxicol Lett; 1984 Feb; 20(2):189-94. PubMed ID: 6229906
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Clearence of antibiotics from the intestines after termination of antibiotic decontamination.
    van der Waaij D; Fekkerkerk-van der Wees JE; Heidt PJ
    J Hyg (Lond); 1974 Dec; 73(3):409-14. PubMed ID: 4531450
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Studies on the interaction and distribution of selenite, mercuric, methoxyethyl mercuric and methyl mercuric chloride in rats. II. Analysis of the soluble proteins and the precipitates of liver and kidney homogenates.
    Mengel H; Karlog O
    Acta Pharmacol Toxicol (Copenh); 1980 Jan; 46(1):25-31. PubMed ID: 6767335
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Biliary excretion and intestinal reabsorption of mercury in the rat after injection of methyl mercuric cloride.
    Norseth T
    Acta Pharmacol Toxicol (Copenh); 1973; 33(4):280-8. PubMed ID: 4800674
    [No Abstract]   [Full Text] [Related]  

  • 52. The effect of N-acetylhomocysteine and its thiolactone on the distribution and excretion of mercury in methyl mercuric chloride injected mice.
    Aaseth J
    Acta Pharmacol Toxicol (Copenh); 1975 Mar; 36(3):v 193-202. PubMed ID: 1173520
    [No Abstract]   [Full Text] [Related]  

  • 53. Different histochemical findings in the brain produced by mercuric chloride and methyl mercury chloride in rats.
    Suda I; Eto K; Tokunaga H; Furusawa R; Suetomi K; Takahashi H
    Neurotoxicology; 1989; 10(1):113-25. PubMed ID: 2771196
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Biotransformation of methylmercury in vitro.
    Ishihara N; Suzuki T
    Tohoku J Exp Med; 1976 Dec; 120(4):361-3. PubMed ID: 1014001
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The role of mammalian intestinal bacteria in the reductive metabolism of zonisamide.
    Kitamura S; Sugihara K; Kuwasako M; Tatsumi K
    J Pharm Pharmacol; 1997 Mar; 49(3):253-6. PubMed ID: 9231340
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Intestinal Methylation and Demethylation of Mercury.
    Li H; Lin X; Zhao J; Cui L; Wang L; Gao Y; Li B; Chen C; Li YF
    Bull Environ Contam Toxicol; 2019 May; 102(5):597-604. PubMed ID: 30515547
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Protein binding of mercury in milk and plasma from mice and man--a comparison between methylmercury and inorganic mercury.
    Sundberg J; Ersson B; Lönnerdal B; Oskarsson A
    Toxicology; 1999 Oct; 137(3):169-84. PubMed ID: 10522497
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The effect of diethyldithiocarbamate on biliary transport, excretion and organ distribution of mercury in the rat after exposure to methyl mercuric chloride.
    Norseth T
    Acta Pharmacol Toxicol (Copenh); 1974 Jan; 34(1):76-87. PubMed ID: 4406560
    [No Abstract]   [Full Text] [Related]  

  • 59. The influence of some thiols on biliary excretion of methyl mercury.
    Refsvik T
    Acta Pharmacol Toxicol (Copenh); 1983 Jan; 52(1):22-9. PubMed ID: 6837321
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mercury species in lymphoid and non-lymphoid tissues after exposure to methyl mercury: correlation with autoimmune parameters during and after treatment in susceptible mice.
    Havarinasab S; Björn E; Nielsen JB; Hultman P
    Toxicol Appl Pharmacol; 2007 May; 221(1):21-8. PubMed ID: 17399758
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.