BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 7343681)

  • 41. Ligand displacement reactions of oxyhemocyanin: comparison of reactivities of arthropods and molluscs.
    Hepp AF; Himmelwright RS; Eickman NC; Solomon EI
    Biochem Biophys Res Commun; 1979 Aug; 89(4):1050-7. PubMed ID: 227375
    [No Abstract]   [Full Text] [Related]  

  • 42. Hemocyanin from Dolabella auricularia. 3. Recombination of Ca 2+ ion to EDTA-treated hemocyanin.
    Makino N
    J Biochem; 1972 Jun; 71(6):987-91. PubMed ID: 4627501
    [No Abstract]   [Full Text] [Related]  

  • 43. Luminescence properties of the dinuclear copper complex in the active site of hemocyanins.
    Beltramini M; di Muro P; Rocco GP; Salvato B
    Arch Biochem Biophys; 1994 Sep; 313(2):318-27. PubMed ID: 8080279
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fluorescence properties and conformational stability of the beta-hemocyanin of Helix pomatia.
    Idakieva K; Siddiqui NI; Parvanova K; Nikolov P; Gielens C
    Biochim Biophys Acta; 2006 Apr; 1764(4):807-14. PubMed ID: 16426906
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Oxygen-linked association-dissociation of Helix pomatia hemocyanin.
    van Driel R; van Bruggen EF
    Biochemistry; 1974 Sep; 13(20):4079-83. PubMed ID: 4414971
    [No Abstract]   [Full Text] [Related]  

  • 46. The nature of the binuclear copper site in Limulus and other hemocyanins.
    Solomon EI; Eickman NC; Himmelwright RS; Hwang YT; Plon SE; Wilcox DE
    Prog Clin Biol Res; 1982; 81():189-230. PubMed ID: 6289350
    [No Abstract]   [Full Text] [Related]  

  • 47. Physical studies of hemocyanins. IV. Oxygen-linked disassociation of Loligo pealei hemocyanin.
    De Phillips HA; Nickerson KW; Johnson M; Van Holde KE
    Biochemistry; 1969 Sep; 8(9):3665-72. PubMed ID: 5820661
    [No Abstract]   [Full Text] [Related]  

  • 48. Self-association and oxygen-binding characteristics of the isolated subunits of Limulus polyphemus hemocyanin.
    Brenowitz M; Bonaventura C; Bonaventura J
    Arch Biochem Biophys; 1984 Apr; 230(1):238-49. PubMed ID: 6712235
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Thin-layer fluorescence cell for ligand binding studies.
    Decker H; Richey B; Lawson RC; Gill SJ
    Anal Biochem; 1983 Dec; 135(2):363-8. PubMed ID: 6660511
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Oxygen binding by hemocyanin from Levantina hierosolima. II. Interpretation of cooperativity in terms of ligand-ligand linkage.
    Shaklai N; Klarman A; Daniel E
    Biochemistry; 1975 Jan; 14(1):105-8. PubMed ID: 234016
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Subunit organization of the abalone Haliotis tuberculata hemocyanin type 2 (HtH2), and the cDNA sequence encoding its functional units d, e, f, g and h.
    Lieb B; Altenhein B; Lehnert R; Gebauer W; Markl J
    Eur J Biochem; 1999 Oct; 265(1):134-44. PubMed ID: 10491167
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Glycosylation sites of hemocyanins of Helix pomatia and Sepia officinalis.
    Gielens C; De Geest N; Compernolle F; Préaux G
    Micron; 2004; 35(1-2):99-100. PubMed ID: 15036305
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Structural insights into the interaction between molluscan hemocyanins and phenolic substrates: An in silico study using docking and molecular dynamics.
    Naresh KN; Sreekumar A; Rajan SS
    J Mol Graph Model; 2015 Sep; 61():272-80. PubMed ID: 26300244
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Functional differences in the multiple hemocyanins of the horseshoe crab, Limulus polyphemus L.
    Sullivan B; Bonaventura J; Bonaventura C
    Proc Natl Acad Sci U S A; 1974 Jun; 71(6):2558-62. PubMed ID: 4210212
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Structure and properties of hemocyanins. XII. Electron microscopy of dissociation products of Helix pomatia alpha-hemocyanin: quaternary structure.
    Siezen RJ; van Bruggen EF
    J Mol Biol; 1974 Nov; 90(1):77-89. PubMed ID: 4453014
    [No Abstract]   [Full Text] [Related]  

  • 56. Functional and structural properties of Murex fulvescens hemocyanin: isolation of two different subunits required for reassociation of a molluscan hemocyanin.
    Brouwer M; Ryan M; Bonaventura J; Bonaventura C
    Biochemistry; 1978 Jul; 17(14):2810-5. PubMed ID: 28744
    [No Abstract]   [Full Text] [Related]  

  • 57. Chloride and pH dependence of cooperative interactions in Limulus polyphemus hemocyanin.
    Brouwer M; Bonaventura C; Bonaventura J
    Prog Clin Biol Res; 1982; 81():231-56. PubMed ID: 6289351
    [No Abstract]   [Full Text] [Related]  

  • 58. Oxygen binding and subunit equilibria of Busycon hemocyanin.
    DePhillips HA; Nickerson KW; Van Holde KF
    J Mol Biol; 1970 Jun; 50(2):471-9. PubMed ID: 5476922
    [No Abstract]   [Full Text] [Related]  

  • 59. Structure of the carbon monoxide binding site of hemocyanins studied by Fourier transform infrared spectroscopy.
    Fager LY; Alben JO
    Biochemistry; 1972 Dec; 11(25):4786-92. PubMed ID: 4655254
    [No Abstract]   [Full Text] [Related]  

  • 60. CO binding by hemocyanins of Limulus polyphemus, Busycon carica, and Callinectes sapidus.
    Bonaventura C; Sullivan B; Bonaventura J; Bourne S
    Biochemistry; 1974 Nov; 13(23):4784-9. PubMed ID: 4429663
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.