These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 7343709)

  • 1. Flow dependence of fluid transport in the isolated superficial pars recta: evidence that osmotic disequilibrium between external solutions drives isotonic fluid absorption.
    Schafer JA; Troutman SL; Watkins ML; Andreoli TE
    Kidney Int; 1981 Nov; 20(5):588-97. PubMed ID: 7343709
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A component of fluid absorption linked to passive ion flows in the superficial pars recta.
    Schafer JA; Patlak CS; Andreoli TE
    J Gen Physiol; 1975 Oct; 66(4):445-71. PubMed ID: 1181377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of bicarbonate on parathyroid hormone-induced changes in fluid absorption by the proximal tubule.
    Dennis VW
    Kidney Int; 1976 Nov; 10(5):373-80. PubMed ID: 1003728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Volume absorption in the pars recta. III. Luminal hypotonicity as a driving force for isotonic volume absorption.
    Andreoli TE; Schafer JA
    Am J Physiol; 1978 Apr; 234(4):F349-55. PubMed ID: 645870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of perfusion rate on the fluxes of water, sodium, chloride and urea across the proximal convoluted tubule.
    Imai M; Seldin DW; Kokko JP
    Kidney Int; 1977 Jan; 11(1):18-27. PubMed ID: 839650
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Volume absorption in the pars recta. II. Hydraulic conductivity coefficient.
    Schafer JA; Patlak CS; Troutman SL; Andreoli TE
    Am J Physiol; 1978 Apr; 234(4):F340-8. PubMed ID: 645869
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lack of relationship of potential difference to fluid absorption in the proximal renal tubule.
    Cardinal J; Lutz MD; Burg MB; Orloff J
    Kidney Int; 1975 Feb; 7(2):94-102. PubMed ID: 1113454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for neutral transcellular NaCl transport and neutral basolateral chloride exit in the rabbit proximal convoluted tubule.
    Baum M; Berry CA
    J Clin Invest; 1984 Jul; 74(1):205-11. PubMed ID: 6736248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bicarbonate and ammonia transport in isolated perfused rat proximal straight tubules.
    Garvin JL; Knepper MA
    Am J Physiol; 1987 Aug; 253(2 Pt 2):F277-81. PubMed ID: 3618790
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bicarbonate transport by isolated perfused rabbit proximal convoluted tubules.
    Burg M; Green N
    Am J Physiol; 1977 Oct; 233(4):F307-14. PubMed ID: 910955
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sodium chloride and water transport in the medullary thick ascending limb of Henle. Evidence for active chloride transport.
    Rocha AS; Kokko JP
    J Clin Invest; 1973 Mar; 52(3):612-23. PubMed ID: 4685086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peritubular protein modulates neutral active NaCl absorption in rabbit proximal convoluted tubule.
    Baum M; Berry CA
    Am J Physiol; 1985 Jun; 248(6 Pt 2):F790-5. PubMed ID: 4003554
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biocarbonate and fluid absorption by renal proximal straight tubules.
    McKinney TD; Burg MB
    Kidney Int; 1977 Jul; 12(1):1-8. PubMed ID: 894911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of ammonia production by mouse proximal tubules perfused in vitro. Effect of luminal perfusion.
    Nagami GT; Kurokawa K
    J Clin Invest; 1985 Mar; 75(3):844-9. PubMed ID: 3920246
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effective luminal hypotonicity: the driving force for isotonic proximal tubular fluid absorption.
    Andreoli TE; Schafer JA
    Am J Physiol; 1979 Feb; 236(2):F89-96. PubMed ID: 369393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Passive driving forces of proximal tubular fluid and bicarbonate transport: gradient dependence of H+ secretion.
    Chan YL; Malnic G; Giebisch G
    Am J Physiol; 1983 Nov; 245(5 Pt 1):F622-33. PubMed ID: 6638182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characteristics of salt and water transport in superficial and juxtamedullary straight segments of proximal tubules.
    Kawamura S; Imai M; Seldin DW; Kukko JP
    J Clin Invest; 1975 Jun; 55(6):1269-77. PubMed ID: 1133172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluid absorption with and without sodium in isolated perfused snake proximal tubules.
    Dantzler WH; Bentley SK
    Am J Physiol; 1978 Jan; 234(1):F68-79. PubMed ID: 623268
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Volume reabsorption, transepithelial potential differences, and ionic permeability properties in mammalian superficial proximal straight tubules.
    Schafer JA; Troutman SL; Andreoli TE
    J Gen Physiol; 1974 Nov; 64(5):582-607. PubMed ID: 4443793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interrelationships of chloride, bicarbonate, sodium, and hydrogen transport in the human ileum.
    Turnberg LA; Bieberdorf FA; Morawski SG; Fordtran JS
    J Clin Invest; 1970 Mar; 49(3):557-67. PubMed ID: 5415682
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.