These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 7344518)

  • 1. Toxicity mediated by reactive metabolites of furans.
    Boyd MR
    Adv Exp Med Biol; 1981; 136 Pt B():865-79. PubMed ID: 7344518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Renal toxicity due to reactive metabolites formed in situ in the kidney: investigations with 4-ipomeanol in the mouse.
    Boyd MR; Dutcher JS
    J Pharmacol Exp Ther; 1981 Mar; 216(3):640-6. PubMed ID: 7205642
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reactive metabolites in the biotransformation of molecules containing a furan ring.
    Peterson LA
    Chem Res Toxicol; 2013 Jan; 26(1):6-25. PubMed ID: 23061605
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The in vitro formation of glutathione conjugates with the microsomally activated pulmonary bronchiolar aklylating agent and cytotoxin, 4-ipomeanol.
    Buckpitt AR; Boyd MR
    J Pharmacol Exp Ther; 1980 Oct; 215(1):97-103. PubMed ID: 7452496
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Degraded protein adducts of cis-2-butene-1,4-dial are urinary and hepatocyte metabolites of furan.
    Lu D; Sullivan MM; Phillips MB; Peterson LA
    Chem Res Toxicol; 2009 Jun; 22(6):997-1007. PubMed ID: 19441776
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differences in cytochrome P450-mediated biotransformation of 1,2-dichlorobenzene by rat and man: implications for human risk assessment.
    Hissink AM; Oudshoorn MJ; Van Ommen B; Haenen GR; Van Bladeren PJ
    Chem Res Toxicol; 1996 Dec; 9(8):1249-56. PubMed ID: 8951226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polyamines are traps for reactive intermediates in furan metabolism.
    Peterson LA; Phillips MB; Lu D; Sullivan MM
    Chem Res Toxicol; 2011 Nov; 24(11):1924-36. PubMed ID: 21842885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic basis for the pulmonary Clara cell as a target for pulmonary carcinogenesis.
    Boyd MR; Reznik-Schüller HM
    Toxicol Pathol; 1984; 12(1):56-61. PubMed ID: 6387866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of glutathione conjugates derived from 4-ipomeanol metabolism in bile of rats by liquid chromatography-tandem mass spectrometry.
    Alvarez-Diez TM; Zheng J
    Drug Metab Dispos; 2004 Dec; 32(12):1345-50. PubMed ID: 15328249
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro studies on the metabolic activation of the pulmonary toxin, 4-ipomeanol, by rat lung and liver microsomes.
    Boyd MR; Burka LT; Wilson BJ; Sasame HA
    J Pharmacol Exp Ther; 1978 Dec; 207(3):677-86. PubMed ID: 32381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Furan-induced cytolethality in isolated rat hepatocytes: correspondence with in vivo dosimetry.
    Carfagna MA; Held SD; Kedderis GL
    Toxicol Appl Pharmacol; 1993 Dec; 123(2):265-73. PubMed ID: 8248933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo studies on the relationship between target organ alkylation and the pulmonary toxicity of a chemically reactive metabolite of 4-ipomeanol.
    Boyd MR; Burka LT
    J Pharmacol Exp Ther; 1978 Dec; 207(3):687-97. PubMed ID: 731424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glutathione trapping to measure microsomal oxidation of furan to cis-2-butene-1,4-dial.
    Peterson LA; Cummings ME; Vu CC; Matter BA
    Drug Metab Dispos; 2005 Oct; 33(10):1453-8. PubMed ID: 16006568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of amino acid and glutathione adducts of cis-2-butene-1,4-dial, a reactive metabolite of furan.
    Chen LJ; Hecht SS; Peterson LA
    Chem Res Toxicol; 1997 Aug; 10(8):866-74. PubMed ID: 9282835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conjugation of glutathione with the reactive metabolites of 1, 1-dichloroethylene in murine lung and liver.
    Forkert PG
    Microsc Res Tech; 1997 Feb; 36(4):234-42. PubMed ID: 9140924
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of metabolic activation in drug toxicity.
    Ormstad K; Moldéus P
    Chemioterapia; 1985 Oct; 4(5):343-8. PubMed ID: 4075431
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hepatobiliary toxicity of furan: identification of furan metabolites in bile of male f344/n rats.
    Hamberger C; Kellert M; Schauer UM; Dekant W; Mally A
    Drug Metab Dispos; 2010 Oct; 38(10):1698-706. PubMed ID: 20639435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dictamnine-induced hepatotoxicity in mice: the role of metabolic activation of furan.
    Shi F; Pan H; Cui B; Li Y; Huang L; Lu Y
    Toxicol Appl Pharmacol; 2019 Feb; 364():68-76. PubMed ID: 30578885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for hepatic formation, export and covalent binding of reactive naphthalene metabolites in extrahepatic tissues in vivo.
    Buckpitt AR; Warren DL
    J Pharmacol Exp Ther; 1983 Apr; 225(1):8-16. PubMed ID: 6834280
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New insights into the molecular mechanisms of chemical carcinogenesis: In vivo adduction of histone H2B by a reactive metabolite of the chemical carcinogen furan.
    Nunes J; Martins IL; Charneira C; Pogribny IP; de Conti A; Beland FA; Marques MM; Jacob CC; Antunes AMM
    Toxicol Lett; 2016 Dec; 264():106-113. PubMed ID: 27825936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.