BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 7344832)

  • 1. Direct measurement of Raman spectra of intact lens in a whole eyeball.
    Mizuno A; Ozaki Y; Kamada Y; Miyazaki H; Itoh K; Iriyama K
    Curr Eye Res; 1981-1982; 1(10):609-13. PubMed ID: 7344832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laser raman spectroscopy of the lens in situ, measured in an anesthetized rabbit.
    Yu NT; Kuck JF; Askren CC
    Curr Eye Res; 1981-1982; 1(10):615-8. PubMed ID: 7344833
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Raman spectra detected from various parts of intact rat lens].
    Miyazaki H; Mizuno A
    Nippon Ganka Gakkai Zasshi; 1987 Apr; 91(4):437-41. PubMed ID: 3618392
    [No Abstract]   [Full Text] [Related]  

  • 4. Raman spectra of normal and ultraviolet-induced cataractous rabbit lens.
    Thomas DM; Schepler KL
    Invest Ophthalmol Vis Sci; 1980 Aug; 19(8):904-12. PubMed ID: 7409985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The microscopic protein structure of the lens with a theory for cataract formation as determined by Raman spectroscopy of intact bovine lenses.
    Schachar RA; Solin SA
    Invest Ophthalmol; 1975 May; 14(5):380-96. PubMed ID: 1126827
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glucocorticoid-induced cataract in chick embryo monitored by Raman spectroscopy.
    Mizuno A; Nishigori H; Iwatsuru M
    Invest Ophthalmol Vis Sci; 1989 Jan; 30(1):132-7. PubMed ID: 2912907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural changes in the lens proteins of hereditary cataracts monitored by Raman spectroscopy.
    Itoh K; Ozaki Y; Mizuno A; Iriyama K
    Biochemistry; 1983 Apr; 22(8):1773-8. PubMed ID: 6849884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of intact rat lens metabolites by P-31 NMR spectroscopy.
    Kopp SJ; Greiner JV; Glonek T
    Curr Eye Res; 1981; 1(7):375-80. PubMed ID: 7318490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Observation of protein diffusivity in intact human and bovine lenses with application to cataract.
    Tanaka T; Benedek GB
    Invest Ophthalmol; 1975 Jun; 14(6):449-56. PubMed ID: 1132941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase separation of X-irradiated lenses of rabbit.
    Clark JI; Giblin FJ; Reddy VN; Benedek GB
    Invest Ophthalmol Vis Sci; 1982 Feb; 22(2):186-90. PubMed ID: 7056632
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Spectrum of the ocular lens in infrared light. II. Characteristics of selected lenses on the basis of their spectra in infrared light].
    Gutsze A; Rózyczka J
    Klin Oczna; 1988; 90 Suppl():469-70. PubMed ID: 3275361
    [No Abstract]   [Full Text] [Related]  

  • 12. Raman microspectroscopy of fixed rabbit and human lenses and lens slices: new potentialities.
    Bot AC; Huizinga A; de Mul FF; Vrensen GF; Greve J
    Exp Eye Res; 1989 Aug; 49(2):161-9. PubMed ID: 2767164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectral studies on normal and cataractous intact human lenses.
    Kurzel RB; Wolbarsht ML; Yamanashi BS
    Exp Eye Res; 1973 Oct; 17(1):65-71. PubMed ID: 4752363
    [No Abstract]   [Full Text] [Related]  

  • 14. Organophosphates of the crystalline lens: a nuclear magnetic resonance spectroscopic study.
    Greiner JV; Kopp SJ; Sanders DR; Glonek T
    Invest Ophthalmol Vis Sci; 1981 Nov; 21(5):700-13. PubMed ID: 7298274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic light scattering in the intact rabbit lens. Its relation to protein concentration.
    Latina M; Chylack LT; Fagerholm P; Nishio I; Tanaka T; Palmquist BM
    Invest Ophthalmol Vis Sci; 1987 Jan; 28(1):175-83. PubMed ID: 3804648
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An application of laser Raman spectroscopy to the study of a hereditary cataractous lens; on the Raman band for a diagnostic marker of cataractous signatures.
    Iriyama K; Mizuno A; Ozaki Y; Itoh K; Matsuzaki H
    Curr Eye Res; 1982-1983; 2(7):489-92. PubMed ID: 7182109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative verification of the existence of high molecular weight protein aggregates in the intact normal human lens by light-scattering spectroscopy.
    Jedziniak JA; Nicoli DF; Baram H; Benedek GB
    Invest Ophthalmol Vis Sci; 1978 Jan; 17(1):51-7. PubMed ID: 621125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of ultrasonication of the rabbit lens in situ as evaluated by analysis of crystallin composition.
    Cuthbert J; Phillips CI; Clayton RM; Clarkson DM
    Trans Ophthalmol Soc U K (1962); 1978; 98(4):494-6. PubMed ID: 291212
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular aging of lens crystallins and the life expectancy of the animal. Age-related protein structural changes studied in situ by Raman spectroscopy.
    Ozaki Y; Mizuno A
    Biochim Biophys Acta; 1992 Jun; 1121(3):245-51. PubMed ID: 1627601
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformational changes in soluble lens proteins during the development of senile nuclear cataract.
    McNamara MK; Augusteyn RC
    Curr Eye Res; 1984 Apr; 3(4):571-83. PubMed ID: 6713956
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.