BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

377 related articles for article (PubMed ID: 7345824)

  • 1. [Mathematical modelling of glycolysis and of adenine nucleotide metabolism of human erythrocytes. II. Simulation of adenine nucleotide breakdown following glucose depletion].
    Schauer M; Heinrich R; Rapoport SM
    Acta Biol Med Ger; 1981; 40(12):1683-97. PubMed ID: 7345824
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adenine nucleotide catabolism in human erythrocytes: pathways and regulation.
    van den Berghe G; Bontemps F
    Biomed Biochim Acta; 1990; 49(2-3):S117-22. PubMed ID: 2167076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Mathematical modelling of glycolysis and adenine nucleotide metabolism of human erythrocytes. I. Reaction-kinetic statements, analysis of in vivo state and determination of starting conditions for in vitro experiments].
    Schauer M; Heinrich R; Rapoport SM
    Acta Biol Med Ger; 1981; 40(12):1659-82. PubMed ID: 6285649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A possible role of adenylate metabolism in human erythrocytes: simple mathematical model.
    Ataullakhanov FI; Komarova SV; Vitvitsky VM
    J Theor Biol; 1996 Mar; 179(1):75-86. PubMed ID: 8733433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A kinetic model for the interaction of energy metabolism and osmotic states of human erythrocytes. Analysis of the stationary "in vivo" state and of time dependent variations under blood preservation conditions.
    Werner A; Heinrich R
    Biomed Biochim Acta; 1985; 44(2):185-212. PubMed ID: 4004830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The breakdown of adenine nucleotides in glucose-depleted human red cells.
    Rapoport I; Rapoport S; Maretzki D; Elsner R
    Acta Biol Med Ger; 1979; 38(10):1419-29. PubMed ID: 44952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accelerated degradation of adenine nucleotide in erythrocytes of patients with chronic renal failure.
    Marlewski M; Smolenski RT; Szolkiewicz M; Aleksandrowicz Z; Rutkowski B; Swierczynski J
    Mol Cell Biochem; 2000 Oct; 213(1-2):93-7. PubMed ID: 11129963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Equilibrium of nucleotides in the dogfish brain.
    Andjus RK; Dzakula Z; Marjanović M
    Ann N Y Acad Sci; 2005 Jun; 1048():36-46. PubMed ID: 16154919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Physiopathologic modifications in the myocardial levels of adenine nucleotides].
    Rossi A; Aussedat J; Lavanchy N
    Diabete Metab; 1984 Oct; 10(4):260-74. PubMed ID: 6239798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pathways of adenine nucleotide catabolism in erythrocytes.
    Bontemps F; Van den Berghe G; Hers HG
    J Clin Invest; 1986 Mar; 77(3):824-30. PubMed ID: 3949980
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Biochemical individuality of humans and invariants of regulation. Scale invariance of the characteristic of glycolysis in erythrocytes].
    Kholodenko BN
    Biofizika; 1980; 25(2):250-7. PubMed ID: 7370336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro adenine nucleotide catabolism in African catfish spermatozoa.
    Zietara MS; Słomińska E; Rurangwa E; Ollevier F; Swierczyński J; Skorkowski EF
    Comp Biochem Physiol B Biochem Mol Biol; 2004 Aug; 138(4):385-9. PubMed ID: 15325339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Concentrations of adenine nucleotides in erythrocytes of patients with gout.
    Nishida Y; Nishizawa T; Kagami T; Akaoka I
    Biol Psychiatry; 1977 Apr; 12(2):305-7. PubMed ID: 870098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of the adenylate deaminase reaction in regulation of adenine nucleotide metabolism in Ehrlich ascites tumor cells.
    Chapman AG; Miller AL; Atkinson DE
    Cancer Res; 1976 Mar; 36(3):1144-50. PubMed ID: 943236
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mathematical models of metabolic systems: general principles and control of glycolysis and membrane transport in erythrocytes.
    Heinrich R
    Biomed Biochim Acta; 1985; 44(6):913-27. PubMed ID: 2931078
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of pH-induced changes of the glycolysis of human erythrocytes.
    Rapoport I; Rapoport TA; Rapoport SM
    Acta Biol Med Ger; 1978; 37(3):393-401. PubMed ID: 32713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Mathematical model for energy metabolism in erythrocytes. Independence of scaled glycolytic characteristics of individual features of the donors].
    Ataullakhanov FI; Buravtsev VN; Vitvitskiĭ VM; Dibrov BF; Zhabotinskiĭ AM
    Biokhimiia; 1980 Jul; 45(7):1267-73. PubMed ID: 6452178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Effect of glycolysis on the metabolism of adenylates in human erythrocytes].
    Ataullakhanov FI; Vitvitskiĭ VM; Zhabotinskiĭ AM; Pichugin AV; Pomazanov VV
    Biokhimiia; 1984 Jan; 49(1):104-10. PubMed ID: 6704444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adenine nucleotide degradation during energy depletion in human lymphoblasts. Adenosine accumulation and adenylate energy charge correlation.
    Matsumoto SS; Raivio KO; Seegmiller JE
    J Biol Chem; 1979 Sep; 254(18):8956-62. PubMed ID: 479172
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Degradation of adenine nucleotides by the soleus muscle in hemorrhagic shock.
    Chaudry IH; Sayeed MM; Baue AE
    Surgery; 1975 Feb; 77(2):180-5. PubMed ID: 1129691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.