These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

51 related articles for article (PubMed ID: 7345983)

  • 1. Relative contribution of mossy and climbing fiber pathways to the postural and motor deficits produced by neck deafferentation.
    D'Ascanio P; Pompeiano O; Santarcangelo E; Stampacchia G
    Arch Ital Biol; 1981 Dec; 119(4):314-23. PubMed ID: 7345983
    [No Abstract]   [Full Text] [Related]  

  • 2. Effects of kainic acid lesions of lateral reticular nucleus on posture and reflex movements.
    Santarcangelo E; Pompeiano O; Stampacchia G
    Arch Ital Biol; 1981 Dec; 119(4):324-40. PubMed ID: 7345984
    [No Abstract]   [Full Text] [Related]  

  • 3. Conditioning of crossed extensor reflex pathways by independent natural stimulation of labyrinth, neck and elbow joint afferents.
    Baxendale RH; Conway BA; Ferrell WR
    Brain Res; 1986 Jul; 377(1):41-6. PubMed ID: 3730854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Directional sensitivity of, and neck afferent input to, cervical and lumbar interneurons modulated by neck rotation.
    Suzuki I; Park BR; Wilson VJ
    Brain Res; 1986 Mar; 367(1-2):356-9. PubMed ID: 3697711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Changes of postural tonus produced by unilateral deafferentation of the musculature of the neck in pigeons].
    Brusatin AM; Kubin L; Manzoni D; Pompeiano O
    Boll Soc Ital Biol Sper; 1979 Oct; 55(19):1970-3. PubMed ID: 554635
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in posture and reflex movements due to kainic acid lesions of the inferior olive.
    Pompeiano O; Santarcangelo E; Stampacchia G; Srivastava UC
    Arch Ital Biol; 1981 Dec; 119(4):279-313. PubMed ID: 7345982
    [No Abstract]   [Full Text] [Related]  

  • 7. Neuronal pathways from foot pad afferents to hindlimb motoneurons in the low spinalized cats.
    Wada N; Kanda Y; Takayama R
    Arch Ital Biol; 1998 Jul; 136(3):153-66. PubMed ID: 9645306
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluctuation of extracellular potassium and calcium in the cerebellar cortex related to climbing fiber activity.
    Stöckle H; Ten Bruggencate G
    Neuroscience; 1980; 5(5):893-901. PubMed ID: 7413088
    [No Abstract]   [Full Text] [Related]  

  • 9. Nicotinic receptors in the cerebellar vermis modulate the gain of the vestibulospinal reflexes in decerebrate cats.
    Andre P; D'Ascanio P; Manzoni D; Pompeiano O
    Arch Ital Biol; 1993 Jan; 131(1):1-24. PubMed ID: 8481082
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative effects of climbing fibre deafferentation on the adult Purkinje cell dendritic tree.
    Bradley P; Berry M
    Brain Res; 1976 Aug; 112(1):133-40. PubMed ID: 947481
    [No Abstract]   [Full Text] [Related]  

  • 11. Polysynaptic pathways from high threshold muscle afferents innervating hindlimb muscles to tail motoneurons in the spinalized cat.
    Wada N; Sugita S; Hirao A; Tokuriki M
    Arch Ital Biol; 1996 Mar; 134(2):191-5. PubMed ID: 8741226
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GABAergic modulation of olivary oscillations.
    Devor A; Yarom Y
    Prog Brain Res; 2000; 124():213-20. PubMed ID: 10943127
    [No Abstract]   [Full Text] [Related]  

  • 13. Plasticity of locomotor sensorimotor interactions after peripheral and/or spinal lesions.
    Rossignol S; Barrière G; Frigon A; Barthélemy D; Bouyer L; Provencher J; Leblond H; Bernard G
    Brain Res Rev; 2008 Jan; 57(1):228-40. PubMed ID: 17822774
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distribution of granule cells projecting to focal Purkinje cells in mouse uvula-nodulus.
    Barmack NH; Yakhnitsa V
    Neuroscience; 2008 Sep; 156(1):216-21. PubMed ID: 18706489
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional segregation of ITD sensitivity in the inferior colliculus of decerebrate cats.
    Ramachandran R; May BJ
    J Neurophysiol; 2002 Nov; 88(5):2251-61. PubMed ID: 12424267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Injections of beta-noradrenergic substances in the cerebellar anterior vermis of cats affect adaptation of the vestibulospinal reflex gain.
    Pompeiano O; Manzoni D; d'Ascanio P; Andre P
    Arch Ital Biol; 1994 Jul; 132(3):117-45. PubMed ID: 7979861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contribution of force feedback to ankle extensor activity in decerebrate walking cats.
    Donelan JM; Pearson KG
    J Neurophysiol; 2004 Oct; 92(4):2093-104. PubMed ID: 15381742
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polysynaptic neuronal pathways from tail cutaneous afferents to hindlimb motoneurons in the spinalized cat.
    Wada N; Takayama R
    Arch Ital Biol; 1998 Jan; 136(1):45-57. PubMed ID: 9492944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of vestibulospinal reflexes through microinjection of an alpha 1-adrenergic antagonist in the dorsal pontine tegmentum of decerebrate cats.
    Cirelli C; D'Ascanio P; Horn E; Pompeiano O; Stampacchia G
    Arch Ital Biol; 1993 Sep; 131(4):275-302. PubMed ID: 7902697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Instigation and control of treadmill locomotion in high decerebrate cats by stimulation of the hook bundle of Russell in the cerebellum.
    Mori S; Matsui T; Mori F; Nakajima K; Matsuyama K
    Can J Physiol Pharmacol; 2000 Nov; 78(11):945-57. PubMed ID: 11100943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.